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Abstract

This thesis presents a comprehensive study aimed at overcoming significant limita-

tions in clinical diffusion MRI (dMRI), with a specific focus on enhancing the resolu-

tion of Q-space and the effective use of single-shell data for improved characterization

of brain microstructures. The research addresses the problem of inadequate angular

resolution in standard clinical diffusion MRI, which often leads to missing crucial clin-

ical details. Additionally, it tackles the difficulty of characterizing neurite orientation

dispersion and density, which is challenging without multi-shell data but is essential

for probing biologically meaningful parameters in the brain.

Central to this research is the hypothesis that clinical dMRI can recover lost mi-

crostructural details from limited Q-space resolution in single-shell protocols. This

recovery is achieved by integrating Diffusion Tensor Imaging (DTI) and Neurite Ori-

entation Dispersion and Density Imaging (NODDI) with advanced Artificial Intelli-

gence (AI) techniques, along with the use of relevant multi-modal clinical priors. The

study aims to accomplish two primary objectives: first, to develop a sophisticated

Q-space up-sampling technique that improves angular resolution using DTI without

compromising clinical details; and second, to effectively address the ill-posed problem

of single-shell NODDI, culminating in its reliable reconstruction validated through

clinical applications.

The research methodology involves a combination of theoretical and practical



xiv

approaches, including the simulation of the single-shell ill-posed problem of NODDI

and the identification of a key parameter, fISO, that is instrumental in resolving this

issue. Additionally, the study explores the application of multi-modal MR priors for

the estimation of fISO and investigates the feasibility of applying NODDI in both

single- and multi-shell settings. This includes clinical validation in contexts of aging

and cognitive performance in a cohort of HIV and Cerebral Small Vessel Disease

(CSVD).

In conclusion, this thesis makes a remarkable contribution to the field of clinical

diffusion MRI by proposing innovative methodology for enhancing Q-space resolu-

tion and effectively utilizing single-shell data, leading to more accurate and detailed

characterization of brain microstructures. The findings and methodologies developed

have the potential to influence future research and clinical practices in the realm of

neuroimaging.
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Chapter 1

Motivation

“The goal is to turn data into information, and information into insight.”

- Carly Fiorina

1.1 Context

Medical Imaging has come a long way with Magnetic Resonance Imaging (MRI).

Among all the non-invasive means of imaging, MRI has presented us with radiation-

free, safe and reliable reconstruction of images modern medicine can offer [1]. Over the

years, physicists have taken this approach further in different dimensions. One of this

prominent dimension was achieved by incorporating diffusion sensitivity with MR.

Although expensive and time consuming, diffusion MRI (dMRI) can non-invasively

detect microstructural abnormalities in the brain by utilizing micrometer-scale dis-

placement of tissue water [2]. This has now been adapted to become more common

in clinical imaging protocols. Clinical diffusion protocols are usually acquired with

a lower number of gradient directions leading to low angular resolution and lower

clarity (Signal-to-Noise Ratio (SNR)) in order to reduce time burden of scanning [3].

As expected, this has reportedly led us to lose clinically meaningful information in
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the process [4, 5].

Modeling conventional clinical data involves studying Diffusion Tensor Imaging

(DTI) and in contrast, for modeling advanced biophysical models (e.g. Neurite Ori-

entation Dispersion and Density Imaging (NODDI)) that mimic human brain micro-

structure, data are often acquired with high gradient strengths and diffusion time,

which is also known as multi-shell data. Clinical dMRI often lacks the physically

required multi-shell information to probe into biologically meaningful compartmental

parameters. Non-invasive visibility of neurite density, extracellular free water fISO

and orientation mapping through NODDI can help us investigate neuropathogene-

sis unlike ever before in clinical domain [6–8]. For example, histologically validated

neurite density from NODDI model have shown to decrease in aging population (in

both white and gray matter regions) confirming the expected neurological degener-

ation [9]. But retrieving this requires us to have a reasonable number of diffusion

directions and multi-shell data, which introduces timing-complexity, and also makes

previously acquired diffusion data in clinical populations unusable [8].

From this perspective, it is clear that we are missing a bridge that can support

clinical dMRI gain more sensitivity and visibility in studying digital histology of the

human brain. With the advent of computational power, now we can guide machines

to learn complex tasks that were not possible before with an active progression of

Artificial Intelligence (AI) techniques. Although these approaches are data-driven,

there’s no free lunch [10], and if used unconditionally, might result in biased conclu-

sions [11]. The application of AI, particularly Deep Learning (DL) methods, signifi-

cantly improved the visual quality of images and have enabled the generation of novel

images from a constrained set of medical imaging data. It is however imperative to

acknowledge that the predominant approaches for validating these DL techniques in

the context of medical imagery have predominantly relied on visual metrics or quali-
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tative assessments as opposed to comprehensive clinical study evaluations. [5] Thus,

modeling clinical dMRI with clinically relevant validation techniques hold promise

and potentials, yet to be yielded to substantially improve clinical dMRI.

This study is presented to act as a fundamental bridge in studying the dMRI

with Artificial Intelligence (Deep/Machine Learning) techniques in order to retrieve

biologically meaningful parameters effectively using clinical diffusion data.

1.2 Problem Statement

In general, processing of clinical dMRI includes normal (Gaussian) modeling of the Q-

space often carried out without high angular resolution and multi-shell Q-space data.

A Q-space is a set of directions for sampling diffusion. A lower angular resolution on

the Q-space can miss important clinical details. The strength and time of applying

diffusion at a particular direction of Q-space can be played with, and have shown to

vary SNR and sensitivity to brain tissue [2,12], this is often termed as multi-shell data.

Furthermore, characterization of neurite orientation dispersion and density in multi-

compartmental setting has shown to be ill-posed without multi-shell data, which is

clinically important to extract biologically meaningful features of the brain [8].

Since clinical dMRI data is limited due to data scarcity and constraints in Q-space,

addressing these two aspects of the Q-space restricted by data scarcity —remains

challenging in the field.
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1.3 Thesis Objective

1.3.1 Hypothesis

Clinical dMRI has the potential to recover lost microstructural details from limited

Q-space resolution in single-shell protocols with DTI and NODDI incorporating AI

techniques with relevant multi-modal priors available clinically.

1.3.2 Objectives

Engineering multi-modal MRI & angular sampling geometry with AI, we aim -

• To establish a competitive Q-space up-sampling technique that recovers angular

resolution without compromising clinical details using DTI.

• To identify and solve ill-posed single-shell NODDI problem and, establish single-

shell reconstruction through clinical validation.

1.4 Structure of the Thesis

The thesis is organized into 7 chapters. Following the introductory motivation, prob-

lem statement and hypothesis in the Chapter 1, the remainder of the thesis is

organized as follows:

Chapter 2 - offers a comprehensive understanding of diffusion & MRI, encompass-

ing fundamental aspects such as molecular diffusion, detectable types of diffusion

and diffusion observed in the human brain micro-structure; then it introduces the ba-

sics of Nuclear Magnetic Resonance (NMR) and highlights the encoding of diffusion

measurements through MR non-invasively.
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Chapter 3 - discusses general pre-processing, artifacts handling & modeling strate-

gies of acquired diffusion signals on a Q-Space. Modeling expands to inference of

brain microstructural configurations using AI (DL/ML) techniques.

Chapter 4 - explores the Q-space super-resolution problem in retaining clinical

differences with single-shell clinical dMRI and proposes a solution with features

based on Q-space geometry that outperforms state-of-the-art AI techniques.

Chapter 5 - focuses on simulating the single-shell ill-posed problem of NODDI

following practical brain fiber configurations and identifies the bottleneck parameter,

i.e. the extracellular free water ( fISO) that shows promise in solving the problem.

Chapter 6 - applies clinically available multi-modal MR priors to enable estima-

tion of the bottleneck parameter, fISO and investigates the application of NODDI

in single- and multi-shell settings in the brain. Further extends to clinical vali-

dation with CSVD subjects in a White Matter Hyper-intensity case and an aging

population.

Chapter 7 - summarizes the primary results obtained in this thesis and discusses

future challenges in the field, providing insights to motivate further research.
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Chapter 2

Background:

Diffusion, MRI & Brain Microstructure

“All science is either physics or stamp collecting.”

— Ernest Rutherford

2.1 Overview

This chapter intends to provide an overview of the fundamental principles underlying

diffusion MRI. It starts with section-2.2, diving into water diffusion as the foun-

dational physical phenomenon assessed by diffusion MRI and its capacity to reveal

information about brain tissue microstructure. To measure non-invasive diffusion we

move on to section-2.3 where the fundamental principles of MRI is discussed and

section-2.4 follows to address the techniques employed to measure water diffusion

within the tissue using MRI. In section-2.5, we highlight the schematic anatomy of

the gray and white matter that undergo specific type of diffusion because of their

underlying histological differences.
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2.2 Diffusion

2.2.1 Basics of Molecular Movement

When we focus on molecular diffusion, it’s essentially about molecules moving spon-

taneously. This occurs as long as we’re not at absolute zero, or above 0 Kelvin [13].

This kind of motion, was spotted first by Robert Brown in 1827 when he was observ-

ing pollen grains under the microscope, is what we call Brownian motion [14]. The

phenomenon is like watching tiny particles dancing randomly when suspended in a

liquid or gas.

There are two main rules that explain how this dance happens on a larger scale:

Fick’s laws. The first one tells us how molecules spread out over time, and the second

describes how the rate of this spreading changes. Imagine a crowd dispersing after a

concert: initially, people move away quickly, but later, as they spread out, they slow

down.

A formal mathematical expression of the above ideas are as follows [15]:

J⃗(⃗L, t) =−D∇C(⃗L, t) (2.1)

∇ · J⃗ =−∂C(⃗L, t)
∂ t

(2.2)

where J is the flux of the particles, D is the diffusion coefficient and C represents

concentration. In this equation L⃗ is the position at time t. Movement of ink particles

dropped in water is a good example of the phenomenon (Figure-2.1(A)).
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Figure 2.1: A) Molecular Diffusion of ink, a physical phenomenon hallucinated by
DALL-E. B) Diffusion simulation in 2D, demonstrating Einstein’s model of diffusion
for a freely diffusing particle.

2.2.2 Einstein's Model of Molecular Diffusion

Albert Einstein expanded Fick’s laws to better describe how molecules diffuse on a

microscopic scale [16]. He posited that the average distance they travel over a certain

period is proportional to the diffusion time. The proportionality is linked with a

Diffusion coefficient (D)—a value that depends on molecular size, temperature, and

the medium’s thickness [17].

This can be concisely expressed as:

⟨L(t)⟩2 = 2nDt (2.3)

where n is degree of freedom for diffusion, t is diffusion time and L(t) represents

diffusion length at time t. Figure-2.1(B) represents free diffusion of a single particle

in 2D (n=2).
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Figure 2.2: Demonstration of linear diffusion in the diffusion of a free particle; and,
non linear diffusion in the diffusion of partial/completely restricted particles

2.2.3 Free, Partial & Completely Restricted Diffusion

In material science and medical imaging, studying diffusion patterns over time can

reveal micro-structures of substances and tissues. Given if the microstructural con-

figuration is restricting or not; or partially restricting, the diffusion length will vary

in differentiating manner over time. Figure-2.2 illustrates three types of molecular

diffusion.

For free diffusion (without any restriction) in the micro-domain, molecules move

without significant obstacles, leading to a near-linear relationship between their dis-

placement over time and the square root of time.

In partially restricted scenarios, molecules encounter some barriers, causing their

displacement rate to increase more slowly compared to free diffusion, as indicated by

the curve leveling off in Figure-2.2.
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Figure 2.3: Schematic depiction of how different diffusion properties may appear in
different tissue types in the brain. The scanning Electron Microscopic image was
adapted from [19]

In strictly restricting micro-structures, molecules are confined within boundaries

and their displacement over time plateaus, indicating they cannot move freely beyond

certain limits.

2.2.4 Diffusion Reveals Microstructure

Human Brain and overall Body is almost 70-80% water which suggests, there is differ-

ent distributions of restricted and non-restricted regions that will undergo diffusion

differently over time. As water diffuses, it reveals the hidden landscape of tissue’s

inner structural integrity. The schematic figure-2.3 adapted from [18] shows how

changing the diffusion pattern may detect pathogenesis and early structural changes

in the human tissue.
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This concludes the fundamental aspect of how diffusion can help in probing into

the structural integrity of the tissue. But how can we measure diffusion in a non-

invasive and safe manner? The answer lies with MRI. As MRI is sensitive to water

contents in the tissue and this sensitivity can be controlled to instantiate diffusion in

different directions.

2.3 Magnetic Resonance Imaging

2.3.1 Quick Introduction to MR

Magnetic Resonance Imaging is based on the quantum concept of NMR. This refers

to protons absorbing energy at resonant frequency and then re-emitting the energy,

a phenomenon first observed by Rabi and his team in 1938, when they measured the

magnetic momentum of chemical elements. NMR was further explored in Bloch and

Purcell’s 1946 experiments. The critical development for MRI was the introduction

of spatial encoding through magnetic field gradients, pioneered by Lauterbur and

others. This innovation turned NMR from a physical phenomenon into the practical

MRI systems used today in both clinical and scientific settings.

In the next sections, we cover the fundamentals of NMR in generating an MRI

image. Initially, we explain how protons behave in a magnetic field and the methods

for measuring their magnetic moments. Subsequently we detail the process of forming

an MRI image.

2.3.1.1 NMR Basics

In the field of NMR, understanding the Larmor frequency is fundamental. It starts

with a charged proton, which spins around its axis, creating a property known as
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spin, represented by J⃗. This spin is intrinsically linked to a magnetic moment µ⃗ , a

key feature of atomic nuclei. The magnetic moment and spin are related through the

equation µ⃗ = γ J⃗, where γ is the gyromagnetic ratio, a unique characteristic of each

type of nucleus.

The application of a strong external magnetic field, denoted by B⃗0, influences these

magnetic moments. Under the influence of B⃗0, the magnetic moments µ⃗ undergo pre-

cession, a type of rotational movement. This precession leads to the establishment of

a net magnetization M⃗ in the sample, which aligns with the magnetic field’s direction.

In NMR analysis, we often define the direction of B⃗0 as the z-axis. Consequently,

terms like “longitudinal” refer to alignment along this z-axis, while “transverse” refers

to orientations in the perpendicular xy-plane. Continuous exposure of the sample to

B⃗0 results in full magnetization, aligning the net magnetization M⃗ entirely with the

external field. This state maximizes longitudinal magnetization while eliminating any

transverse magnetization.

Larmor frequency, denoted as ω , characterizes the rate of precession of the mag-

netic moments and is given by the formula:

ω = γ|B⃗| (2.4)

Here, B⃗ represents the external magnetic field. This pivotal equation reveals that

the Larmor frequency is a function of both the field strength |B⃗| and the gyromagnetic

ratio γ of the nucleus. For example, in hydrogen atoms of water molecules placed in a

1.5T, 3T and 7T magnetic field, the Larmor frequency is approximately 64, 128 and

298.67MHz respectively.
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2.3.1.2 Inside the Magnet: Net Magnetization Detection

To detect the net magnetization vector M⃗, we consider its weak signal along the z-

axis, aligned with the primary magnetic field. Detection requires rotating M⃗ away

from the z-axis using a Radiofrequency (RF) pulse. This causes M⃗ to realign with the

z-axis post-excitation, generating a detectable signal. The rotation angle is known as

the flip angle, often set at 90 degrees.

The protons lose energy post-excitation, causing M⃗ to reorient towards the z-axis,

leading to two relaxation phenomena: spin-lattice relaxation along B⃗0 and spin-spin

relaxation perpendicular to B⃗0. T1 and T2 relaxation times vary across different

tissues, influenced by their composition and the external magnetic field.

The relaxation dynamics follow the Bloch equations:

dM⃗
dt

= γM⃗× B⃗−
Mx î+My ĵ

T 2
− Mz −M0

T 1
k̂ (2.5)

Here, M0 is the equilibrium value of Mz, γM⃗ × B⃗ denotes precession, T 1 is the spin-

lattice relaxation time, and T 2 is the spin-spin relaxation time.

Spin-Lattice Relaxation: This process describes the exponential recovery of

longitudinal magnetization. The equation for spin-lattice relaxation is:

Mz(t) = M0

(
1− e−

t
T 1

)
(2.6)

Spin-Spin Relaxation: Known as transverse relaxation, this is represented

mathematically in a uniform field B0 as:

Mxy(t) = Mxy(0)e−
t

T 2 (2.7)
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In practical MRI with inhomogeneous external fields, the decay of transverse mag-

netization is characterized by T 2∗, which is shorter than T 2. The equation including

this extra dephasing is:

Mxy(t) = Mxy(0)e−
t

T 2∗ (2.8)

2.3.2 MR Image Generation

In order to generate MR image, the fundamental goal is 3D spatial encoding, which

will generate a signal that inherently contains positional information. This process

is broadly divided into two stages; Firstly, selecting a specific slice of the object in

z-axis, and Secondly, pinpointing locations within that slice (xy-plane).

2.3.2.1 Slice Selection

As previously discussed, there’s a direct correlation between the Larmor frequency

of a proton and the strength of the external magnetic field. By applying a z-axis

gradient G⃗z, the Larmor frequency ω for each slice can be expressed as:

ω = γ(B0 + z|G⃗z|) (2.9)

Adjusting the RF pulse frequency allows for the selective excitation of protons in

a specific slice by matching their Larmor frequency, which varies across the body due

to the applied magnetic field gradient. This is the essence of slice selection in MRI.

2.3.2.2 Spatial Encoding within a Slice

To accurately encode positions within a slice, we employ a combination of frequency

and phase encoding techniques. Frequency encoding is akin to the slice selection

process. In contrast, phase encoding assigns unique phases to protons at different
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locations by applying a gradient in phase encoding. Typically, this phase-encoding

gradient is activated post slice selection and prior to frequency encoding, and the

frequency encoding gradient is applied during signal measurement.

For instance, applying a y-axis gradient G⃗y for a duration τ alters the phase ϕ of

magnetization along the y-axis, which remains constant upon deactivation of G⃗y:

ϕ = γ|G⃗y|yτ (2.10)

Similarly, applying an x-axis gradient G⃗x causes the Larmor frequency to vary

along the x-axis:

ω = γ|G⃗x|x (2.11)

In summary, during and after the RF pulse, gradient magnets are used to create

slight variations in the magnetic field at different locations within the body. These

gradients are applied in three dimensions (x, y, and z axes) and allow each point

in the body to have a unique frequency or phase. This spatial encoding is essential

for determining from where in the body the MR signals originate. The reader is

encouraged to watch the video cited on MRI signal localization to visualize the process

[20].

2.3.2.3 K-Space to Anatomical Image Reconstruction

With the application of RF pulses, the hydrogen atoms emit signals as they return

to their original state. These signals are detected and the combination of phase and

frequency encoding allows for the determination of the origin of the signals in two

dimensions within the selected slice. These signals are then placed into a spatial

frequency domain known as k-space. Each signal fills a different part of k-space, with
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Figure 2.4: Example MRI T1 magnitude reconstructed from the sampled complex
MRI signals on the k-space, shown as Amplitude and Phase (in radian)

different gradients contributing to different parts of k-space. The entire k-space must

be filled to produce an image.

Once k-space is fully sampled with complex MR signals (with amplitude and phase

shown in figure-2.4), it is reconstructed to spatial images using fourier transform.

This transformation translates the complex frequency amplitude and phase (radian)

information into a gray-scale image that represents the anatomy that radiologists can

interpret. These images can be manipulated for better visualization and are often

used for diagnostic purposes.

2.4 Encoding Diffusion using MRI

The discovery of MRI sensitivity to molecular self-diffusion dates back to 1950, when

Hahn observed a signal reduction while using the Spin Echo (SE) sequence [21]. He

proposed the idea that the diffusion coefficient could be measured. It wasn’t until

1954, however, that Carr and Purcell [22] utilized Hahn’s spin-echo sequence to create
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a method for measuring this phenomenon. They observed that the magnitude of the

SE signal is notably affected by random molecular diffusion. In 1956, these effects were

incorporated into the Bloch Equation-2.5, creating the Bloch-Torrey Equation [23]:

dM
dt

= γ(M×B0)−


Mx
T2

My
T2

Mz−M0
T1

+ D∇2M (2.12)

In this context, M denotes the magnetization of a sample subjected to a static

magnetic field B0. The gyromagnetic ratio is represented by γ , and Mx,My,Mz symbol-

ize the magnetization components along the x, y, and z axes, respectively. M0 refers

to the sample’s magnetization under thermal equilibrium. T1 and T2 are identified as

the longitudinal and transverse relaxation times, respectively, while D stands for the

diffusion coefficient. The initial two components of Equation-2.12 originate from the

original Bloch Equation, as noted in reference [23]. The third segment of Equation

2.12 is an addition made by Torrey. In terms of the Bloch-Torrey equation (Equation

1), the solution for magnetization within the transverse plane ( Mxy = Mx+ iMy ) post

a 90° pulse is expressed as:

Mxy = M0e−
t

T2 e−bD (2.13)

S(0) = M0e−
t

T2 (2.14)

Following this, in the 1960s, Stejskal and Tanner [24] developed the Pulsed Gra-

dient Spin Echo (PGSE) sequence, characterized by short-duration gradient pulses.

The PGSE sequence operates on the principle that the gradient pulse duration (δ )

is significantly shorter than the spacing between the two gradients (∆). The net phase
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Time
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Figure 2.5: Schematic diagram of timing in PGSE sequence

difference of spins between these two gradients is dependent on their positions at two

distinct time points. If the spins move during the interval between these gradient

pulses, the resultant signal is weaker compared to when the spins remain stationary.

The signal measured in diffusion MRI using the PGSE sequence is formulated as:

S(⃗q) = S(0)
∫

p(⃗r)e−i⃗q·⃗rd⃗r (2.15)

In this equation, S(⃗q) and S0 represent the signals acquired with and without the

diffusion weighting gradients, respectively. Here, p(⃗r) is the probability density dis-

tribution of water molecule displacements, q⃗ is defined as γδ G⃗, and r⃗ denotes the

diffusion displacement between the two diffusion-encoding gradient pulses.

2.4.1 Diffusion Gradient, Time & b-value

The “b-value” or “b factor” is a critical parameter in MRI for characterizing diffu-

sion sensitivity [25, 26]. This factor, also known as the diffusion weighting factor, is



CHAPTER 2. BACKGROUND: DIFFUSION, MRI & BRAIN 20

Figure 2.6: Diffusion Length is inversely proportional to the diffusion signal from
dMR. (A) and (B) adapted with permission from John Wiley and Sons [28]. (C)
Demonstrates the non-linear relationship still holds for increasing b-value in par-
tial/restricting compartments for Diffusion Length.

expressed as:

b = q2
(

∆− δ
3

)
= (γδG)2

(
∆− δ

3

)
(2.16)

This relationship holds true specifically when δ is considerably smaller than ∆ in a

single diffusion encoding scenario. The more generalized definition of the b value is

given by:

b = γ2
∫ t

0

∣∣∣∣∫ t ′

0
G∗ (t ′′)dt ′′

∣∣∣∣2 dt ′ (2.17)

Here, G∗ represents the effective diffusion gradient. Further details about the under-

lying physics can be found in [27].

2.4.2 Diffusion b-vectors & Q-space

For applying controlled diffusion, the b-value parameters is an important scalar; But

it doesn’t account for controlling the direction of the diffusion applied on a tissue

fragment. Also, to solve for Equation-2.13 we need to have at least a number of

directions equal to the unknown parameters in diffusivity matrix, further explained

in Section-3.2.1. The sampling directions can be represented as unit vectors on a

sphere with unit radius, which is known as the Q-Space. The Q-space refers to a unit
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Figure 2.7: Multi-shelled Q-space in diffusion protocols, shown with their relationship
to diffusion length.
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SO(3) sphere with a number of b-vector samples along which diffusion measurements

are done. In summary, the b vector is the vector component of the applied b-value

to sample a diffusion measurement. For uniform coverage on the Q-space, optimiza-

tion techniques are recommended, which ensures reliable coverage to model the fiber

orientation density [29].

2.5 Human Brain

Depending on micro-structure of the underlying brain tissue, we would expect to

observe different diffusion phenomena in these tissues. Since the brain can be grossly

divided into two visibly different types of tissue, i.e. gray and white matter, this

section aims to provide background information on their microstructural building

blocks.

2.5.1 White Matter

White matter primarily consists of myelinated axons, which are composed of an inter-

nal space within the axon, encased by both an axonal membrane and myelin sheaths

created by oligodendrocyte glial cells [31–34]. The size of this intra-axonal space

varies, generally measuring between 0.2 and 10µm across in the human corpus cal-

losum, typically around 0.6µm [31]. Oligodendrocytes, with a cell body diameter

of 6–8µm, extend several membranous processes that can form up to 60 myelin

sheaths [32]. These sheaths are made of a repeatedly folded membrane, spiraling

around the axon. This results in a compacted lipid layer and a thin water layer in

between the membrane folds [33,34]. A single sheath can cover a length of 100–1700

µm along an axon, known as an internode, with nodes of Ranvier, measuring 1–5

µm wide, interspersed between them [33,34]. These nodes are in contact with fibrous
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Figure 2.8: Micro-structure with relative tissue volume fractions of (A) Gray Matter
and (B) White Matter adapted from [30].
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astrocyte processes. Studies using electron and light microscopy on various animals,

including guinea pigs, rats, macaques, and mice, have estimated the composition of

white matter [35–38].

2.5.2 Gray Matter

The primary structure of gray matter is predominantly made up of neuron cell bodies,

dendrites, unmyelinated axons, glial cells, and capillaries.

Neurons

Each neuron has a cell body, or soma, measuring 10 to 100 µm in diameter. These

neurons feature multiple dendrites for receiving incoming signal and an axon for signal

transmission.

Dendrites generally have a diameter of about 1 µm and extend to a length of

3 to 4 mm in a single neuron, divided across branching segments of 60 to 70 µm in

length. Dendrites are covered with dense spines, they are tiny protrusions measuring

1 to 3 µm and characterized by a large head and thinner neck [39].

Un-myelinated Axons consist mostly of branching collaterals, varying in diam-

eter from 0.3 to 1.6 µm, and ending in ‘boutons’ at their distal ends [40].

Synaptic Terminals

Synaptic terminals, the sites of electrochemical communication between neurons, are

formed where the ending feet of protoplasmic astrocytes meet dendritic spines and

axonal boutons [41].
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2.5.3 Probing Brain Microstructure with dMRI

Using electron microscopy on mouse cortex and white matter tissue, the volume

fractions of various microstructural components are measured and reported in Figure-

2.8 [30].

For white matter, approximately two-thirds is made up of myelinated axons,

evenly divided between the intra-axonal space and myelin. The rest of the white

matter consists of various elements, including the intra-axonal space of unmyeli-

nated axons, astrocyte and oligodendrocyte cells and processes, and a small percent-

age of extracellular space [35, 38]. Various diffusion models such as AxCaliber [42],

NODDI [8, 12] has been proposed for neurite quantification.

In a multi-compartmental scenario, for cortices (gray matter), neurites occupy

around two-thirds of the volume, evenly split between the axon and dendeites. The

rest of the space is filled with 10–20% of axonal boutons and dendritic spines, 10%

of astrocytes and other glial cells , around 8% soma, 5% extracellular space, and 4%

blood vessels. [43–45]. Diffusion models are specifically designed with high b-values to

characterize various elements of gray matter independently using Soma And Neurite

Density Imaging. (SANDI) [46].

Additionally, according to imaging data, blood vessels constitute about 2–3%

of white matter’s composition [47]. Recent advancement in Intravoxel Incoherent

Motion (IVIM) based DTI show promise in quantifying perfusion for blood vessels

in the brain [?, 48]. The generalized and specific models relevant to this thesis are

organized in the next chapter and summarized in Table-3.2.
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Chapter 3

General Models, AI & Analysis in dMRI

“All models are wrong, but some are useful.”

— George E. P. Box

3.1 Overview

In the previous chapter we have built on the physics of diffusion, MRI and encoding

diffusion with MRI. In this chapter, we aim to highlight the required processing steps

after data acquisition and approaches to model these signals using the context of

Q-Space to be able to interpret micro-configuration of the tissue under investigation.

Then the chapter discusses general Artificial Intelligence (Deep/Machine Learning)

frameworks and strategies used in this thesis to infer brain microstructural configu-

rations using such techniques. Since the data-driven strategies come with warnings,

we highlight them and discuss the types of features that are appropriate to model

diffusion MR signals. 1

1This chapter was partly published in Faiyaz, A., Doyley, M. M., Schifitto, G., & Uddin, M.
N. (2023). Frontiers in Neurology, 14, 1168833.
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3.2 Representing Diffusion MR Signals

Sparse diffusion signals need to be summarized in order to get meaningful diffusion

parameters. Through diffusion we generally investigate the directionality and how

anisotropic the diffusion process was in the tissue. This is well achieved by mathemat-

ically modeling the signals. Mathematical modeling includes modeling the diffusion

process on the Q-space using a 2D tensor (Section-3.2.1) and spherical harmonic basis

representation through Constrained Spherical Deconvolution (Figure-5.4).

Advanced characterization of diffusion signal is also possible by using biophysical

representation, which takes a practically useful approach in modeling brain tissue

compartments.

In short, mathematical representations are formulas, and biophysical models are

pictures. [2]

3.2.1 Mathematical modeling

For the PGSE protocol highlighted in Section-2.4, solution to Equation-2.15 can be

written simply as follows

S = S0e−bgT Dg (3.1)

where, S0 refers to T2-weighted measure for reference, b as b-value and g as b-

vector. To summarize diffusion in 3-dimension, the D matrix is defined as the 2D

tensor.

Diffusion Tensor Imaging

DTI is a specialized form of MRI that captures the directional movement of wa-

ter molecules in tissue, based on the principles of diffusion and the assumption of

Gaussianity in the diffusion process.
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1. Tensor Matrix (D):

D =


Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz


This equation represents the diffusion tensor matrix D, which is a 3×3 symmet-

ric matrix. The elements of the matrix (Dxx, Dxy, Dxz, Dyy, Dyz, Dzz) represent

the diffusion coefficients along and across different axes (x, y, z). This matrix is

key in DTI, as it characterizes the diffusion of water molecules in tissue, which

is anisotropic in biological tissues like brain white matter.

2. Least Squares Fit ( fLLS):

fLLS(γ) =
1
2 ∑

i=1

(
yi −

7

∑
j=1

Wijγ j

)2

This equation is used in the context of linear least squares fitting. Here, fLLS is

a function representing the sum of squared differences between observed values

(yi) and values predicted by a linear model. Wij are weights and γ j are model

parameters. This method is often used in DTI to solve for the tensor elements.

3. Tensor Decomposition:

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

= [v⃗1v⃗2v⃗3]


λ1 0 0

0 λ2 0

0 0 λ3

 [v⃗1v⃗2v⃗3]
−1

This equation shows the eigenvalue decomposition of the diffusion tensor. The

matrix D is decomposed into eigenvectors (v1, v2, v3) and eigenvalues (λ1, λ2,

λ3). The eigenvectors represent the principal directions of diffusion, and the
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eigenvalues represent the magnitude of diffusion in those directions.

Computing DTI Metrics

Tensor decomposition leads to computation of DTI metrics, designed specifically to

study the characteristics of Gaussianity of the 2D tensor.

1. Fractional Anisotropy (FA):

FA =

√
(λ1 −MD)2 +(λ2 −MD)2 +(λ3 −MD)2

2
(
λ 2

1 +λ 2
2 +λ 2

3
)

FA measures the degree of diffusion anisotropy. It’s a scalar value between 0 and

1, indicating how directional the water diffusion is. A high FA value indicates

that diffusion is highly directional (anisotropic), common in areas like white

matter tracts.

2. Axial Diffusivity (AD):

AD = λ1

AD refers to the diffusion along the principal axis of diffusion. It’s simply the

first eigenvalue (λ1) of the diffusion tensor and represents diffusion along the

main direction of fibers, such as nerve axons in the brain.

3. Mean Diffusivity (MD):

MD =
λ1 +λ2 +λ3

3

MD is the average of the eigenvalues and represents the average diffusion rate ir-

respective of direction. It’s a measure of the overall mobility of water molecules.
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Figure 3.1: Example of diffusion scalar maps (FA, MD, AD, RD) derived from fitted
diffusion tensors.
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4. Radial Diffusivity (RD):

RD =
λ2 +λ3

2

RD represents diffusion perpendicular to the principal diffusion direction and

is the average of the second and third eigenvalues. It’s particularly useful in

assessing myelin integrity in nerve fibers.

In summary, these equations form the mathematical foundation for analyzing and

interpreting the data obtained from DTI scans, which are crucial in studying brain

tissue, particularly white matter structures.

3.2.2 Biophysical modeling

Neurite Orientation Dispersion & Density Imaging

DTI fitting assigns one apparent diffusion coefficient (ADC) for a single voxel while

the NODDI tissue model hypothesizes three different micro-environments, where the

ADC in each hypothesized compartment is different. So, for an MR signal in a given

voxel, the associated micro-environments are extracellular, intra-cellular and free-

standing water in different configurations. The related diffusion coefficients for three

compartments are intrinsic parallel diffusivity (d∥), perpendicular diffusivity (d⊥) and

isotropic diffusivity (dISO). In the NODDI model, the diffusivities are assumed to be

fixed in-vivo [42,49]: d∥ = 1.7x10−3mm2s−1 and dISO = 3.0x10−3mm2s−1, whereas the

perpendicular diffusivity d⊥ is related to NDI and d∥ by the mean-field tortuosity

model as d⊥ = (1−NDI)d∥. Therefore, the NODDI tissue model is stated as-

AQ = (1− fISO)(NDI ·AIC +(1−NDI) ·AEC)+ fISOAISO (3.2)

where Neurite Density Index (NDI) is defined as Neurite Density Index which is
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the intracellular volume fraction and Fractional Isotropy or Free Water ( fISO) is the

fractional isotropy or free water. For the intracellular (IC) compartment,

AIC =
∫

S2
fM (⃗n)e−bd∥(q·n)2

d−→n (3.3)

where b = b-value, q = b-vector, n = samples of directions on a sphere on which

the integration is done. Probability of finding orientation directed along n when µ

and κ is known,

fM (⃗n | µ⃗,κ) = M
(

1
2
,
3
2
,κ
)−1

eκ (⃗µ ·⃗n)2 (3.4)

where M is defined as Kummer’s confluent hypergeometric function. For the

extracellular (EC) compartment,

AEC = e−bqqT DEC( f ,NDI)q (3.5)

DEC( f ,NDI) =
∫

fM (⃗n)Dh(⃗n,NDI)dn⃗ (3.6)

Details for Equation (3.5) and (3.6) can be found in the previous report [8].

For the isotropic compartment,

AISO = e−b.dISO (3.7)

ODI is dependent on κ , known as the concentration parameter associated with

the Watson distribution defined in Equation 3.4 and calculated as follows

ODI =
2
π

arctan
(

1
κ

)
(3.8)

We use multi-shell protocol with ground-truth parameters to synthesize the diffu-

sion weighted signal based on the defined model and Rician noise with signal to noise
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ratio (SNR) of 20 dB is added to the synthesized signal.

3.2.2.1 Multi-parameter Visualization of NODDI

The NODDI model focuses on the estimation of the following parameters:

Neurite Density Index(NDI): This parameter quantifies the volume fraction

of the intracellular space, so it is also termed as intracellular volume fraction Intra-

Cellular Volume Fraction (ICVF), reflecting the density of neurites (axons and den-

drites) in brain tissue. A higher NDI/ICVF indicates a higher density of neurites.

Orientation Dispersion Index (ODI): ODI measures the dispersion of neurite

orientations within a voxel. It reflects the degree of alignment or coherence of neurites.

A low ODI indicates highly aligned neurites, whereas a high ODI suggests more

dispersed or isotropic orientations.

Free Water ( fISO): This parameter represents the fraction of the diffusion signal

that is isotropic, which is often attributed to extracellular and/or Cerebro Spinal Fluid

spaces, so this is also termed as Fractional Isotropy or Isotropic Volume Fraction. It

can provide insights into changes in the brain’s extracellular environment.

These parameters together provide a more comprehensive understanding of the

brain’s microstructural environment compared to conventional DTI, which primar-

ily focuses on overall diffusion magnitude and directionality. NODDI’s ability to

differentiate between neurite density and orientation dispersion makes it a valuable

tool in neuroscience and clinical research, particularly in studies related to brain

development, aging, and neurodegenerative diseases. To accommodate combined vi-

sualization of these three parameters, we can use the Hue, Saturation and intensity

Value (HSV) colorspace in the following order where Hue represents fISO, Orienta-

tion Dispersion is shown with Saturation and NDI is characterized with Intensity

Value(V), the colormap is further shown in Figure-3.3(B,C). Figure-3.3A shows com-



CHAPTER 3. GENERAL MODELS, AI & ANALYSIS IN DMRI 35

(a) Compartmental volume fractions of NODDI, i.e.. NDI and fISO

(b) Geometrical parameter (i.e. ODI) of NODDI in higher and lower NDI conditions. ODI
Geometry is adapted from [8]

Figure 3.2: Schematic diagram for Neurite Orientation Dispersion and Density Model.
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Figure 3.3: A) NODDI parameters ( fISO,ODI,NDI) in combined HSV colorspace. B
and C illustrates the color-map depiction.
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bined parameters of NODDI in HSV space generated through plot-noddi-combined.m

function here.

3.3 Artificial Intelligence (DL/ML) for dMRI

The fuel of data-driven AI models are clean data. At first, the data is curated and

prepared for feature extraction. Based on the learning objective and data structure it-

self, feature engineering is done, which plays an important role in the learning process.

Learning process also relies on the optimization criteria used, training model and eval-

uation function. For clinical data such as dMRI, clinical evaluation must be taken

under consideration. Figure-3.4(A) illustrates the three fundamental components

used to extract microstructure from scanner-derived dMRI data: a mathematical or

biophysical model, an optimization algorithm, and an objective function. These com-

ponents are essential for voxel or volume-wise processing of DW data. Historically,

before the rise of DL tools, algorithms such as Gradient Descent, Newton’s method,

and the Levenberg-Marquardt algorithm were widely used for solving inverse prob-

lems [50]. These algorithms typically utilized objective functions designed to mimic

the noise distribution in the data, such as Gaussian or Rician noise commonly found

in MRI. The objective was often to maximize the log-likelihood of the measured DW

data considering these noise distributions. Additionally, in some instances, the prob-

lems were reformulated within a sparse dictionary framework [51], and regularization

terms were frequently added to the objective functions to address the challenges posed

by ill-posed problems. Regularization techniques such as Lasso (L1), Ridge (L2), and

Tikhonov were employed to stabilize these problems [51–53]. One limitation of the

maximum likelihood estimation (MLE) frameworks was their tendency to converge

to local minima, heavily influenced by the initial parameters set for the biophysical

https://github.com/abrarfaiyaz/noddi_hsv/
https://github.com/abrarfaiyaz/noddi_hsv/
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Feature Type Methods Specialty
Sparse MLP Maps Sparse inputs to

Sparse outputs

Spatial
2D/3D/4D

CNN Extract spatial features to
map to an output

AutoEncoders Extract spatial features in a
unsupervised manner

U-Net -
(Supervised
AutoEncoder)

Extract Spatial features in
supervised task to map out-
put to an image

Sequential
RNN Short-term memory

mapped to an output
LSTM Long- and short term mem-

ory mapped to an output
Transformers Attention to map a se-

quence to an output

Table 3.1: Classification of fundamental AI artitectures with feature types.

model [8, 54]. To address this, grid search methods were commonly used to find a

suitable starting point, though these methods were computationally intensive [55,56].

Despite reducing computational redundancy, sparse dictionary representation of such

models often compromised accuracy [51].

The field of imaging reconstruction, particularly the use of optimizers, is increas-

ingly embracing DL/ML techniques (as shown in Figure-3.4D). A significant benefit

of these techniques is their ability to generalize, though this is not without inherent

biases [11]. Nevertheless, promising strategies have emerged to mitigate these biases.

One such strategy is Data Engineering, which aims to minimize training-data bias by

enhancing data priors. This is achieved either by leveraging problem geometry or by

utilizing different available modalities as priors, a process akin to ’prior regulariza-

tion’. This approach not only helps in moving solutions away from local minima but

also improves objective values and reduces bias. This improvement is particularly no-

table when the starting points for MLE are determined through adapted multi-layer
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perceptrons (MLP) [12, 54].

The utilization of DL/ML architectures is growing, but the field faces challenges in

standardizing nomenclature and identifying underlying generic architectures. Mon-

itoring these architectures is vital due to their specific limitations and the distinct

biases they introduce. For instance, CNN/U-net/GAN architectures tend to cre-

ate complex structures that might be clinically misleading [53, 57–59], while general

MLPs, when overparameterized with noise, tend to produce outcomes that average

the training data [11].

3.3.1 General AI (DL/ML) Models

The landscape of Artificial Intelligence, particularly in Deep Learning (DL) and Ma-

chine Learning (ML), is marked by a variety of architectures, each specialized for

handling different types of features. These architectures have been introduced over

time, reflecting the evolution of the field.

1. Sparse Feature Processing:

Multi-Layer Perceptron (MLP): This architecture is designed to handle

sparse inputs and map them to sparse outputs. The strength of MLP lies in

its ability to process features that have a large number of dimensions but are

sparsely populated, making it effective for tasks like recommendation systems.

2. Spatial Feature Processing (2D/3D/4D):

Convolution Neural Network (CNN): Introduced in the 1980s with signif-

icant developments in the 1990s, CNNs are adept at extracting spatial features

from images or video data. They map these features to an output, making them

pivotal in image and video recognition tasks.
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Figure 3.4: dMRI based microstructural reconstruction in human brain: Schematics
& Progress through AI: A) general schematics of microstructural reconstruction us-
ing biophysical model; B) Multishell diffusion protocol in q-space. C) shows radial
summary of types of architectures AI approaches use; D) displays the number of AI
approaches proposed over the last decade; D) shows the radial summary of biophysi-
cal models these AI approaches are applied to.
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AutoEncoders: These are used for unsupervised learning of efficient codings.

They are particularly useful for dimensionality reduction and feature learning in

spatial data.

U-Net (Supervised AutoEncoder): An advancement in the AutoEncoder

design, the U-Net architecture is specialized for image segmentation tasks. It’s

designed to work in a supervised learning setting, providing precise mapping from

spatial features to segmented images.

3. Sequential Feature Processing:

RNN (Recurrent Neural Networks): RNNs, introduced in the 1980s, are

designed to handle sequential data with short-term memory, mapping sequences

to outputs. They have been fundamental in processing time-series data.

LSTM (Long Short-Term Memory): An extension of RNNs, LSTMs were

introduced in 1997 to overcome the limitations of RNNs in handling long-term

dependencies. They are effective in sequential tasks that require understanding

both long-term and short-term dependencies.

Transformers: Introduced in 2017, Transformers marked a significant shift in

handling sequential data. Unlike RNNs and LSTMs, Transformers use atten-

tion mechanisms to map sequences to outputs. They have been revolutionary in

natural language processing tasks.

Each of these architectures has contributed to the advancement of AI, addressing

specific challenges and paving the way for sophisticated applications in various fields

such as natural language processing, computer vision, and beyond.

Combinatorial Approaches in AI Architectures: Alongside these individual

models, there is an increasing trend in combining different architectures to leverage
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the strengths of each for more complex tasks. These hybrid models integrate various

architectures like CNNs with LSTMs or Transformers with AutoEncoders, enabling

them to process multiple feature types simultaneously. This approach enhances the

model’s capability to understand and interpret complex data that exhibits a com-

bination of spatial, sequential, and sparse features. Such integrations are pushing

the boundaries of AI applications, allowing for more nuanced and sophisticated data

analysis and interpretation.

3.3.2 AI(DL/ML) Strategies for Microstructure Reconstruction

Based on how the DL/ML algorithms are applied to analyze dMRI data, we have

divided them into three categories found in Table-3.2(Block B, C and D).

3.3.2.1 AI Agnostic to Q-Space Features

First category of AI algorithms focuses on direct DWI signal mapping, and is generally

agnostic to q-space geometry or how the sampling scheme is oriented for the signal.

Some of these algorithms are analogous to the Natural Language Processing (NLP) al-

gorithms which are often used in speech data processing. Examples include Recurrent

Neural Network (RNN), Long Short-Term Memory (LSTM), Generative Adversarial

Networks (GAN), Attention mechanisms, etc [97–100]. The Memory/Forget block

in some of these architectures allows for the development of signal orientation priors

that are not directly sensitive to the geometry of the sampling scheme [87]. It is not

impossible that these artificially generated priors might be misleading when there is

substantial noise [53]. As it has been noted in the literature that with lower SNR,

the AI algorithms are more prone to training data bias [11].
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3.3.2.2 AI with Angular Q-Space Features

Second category of algorithms is much more diverse in use of the geometry of the q-

space. Inherent property of some of the architectures in this group helps to preserve

this preceding geometry information, for example, graph and spherical convolutional

(GCN/SCN) approaches extract features that are relevant to the geometry of the

acquisition schemes [74, 78]. As the geometry of the q-space is incorporated, the

mapping algorithms in the first category have been shown to be used in parallel

to further enhance their performance [71]. Q-space dMRI regression is yet another

unexplored area shown promising result when used with optimized protocol and a

subsampling scheme [76, 101]. Furthermore, embeddings specifically designed over

the q space analogous to zonal features have shown to map fODF using adapted

MLPs [82]. Thus, we believe q-space is a natural characteristic of diffusion protocol

that holds enough potential to be exploited.

3.3.2.3 AI and MLE Integrated Frameworks

Third category of algorithms embrace the recent trend in enhancing the Maximum

Likelihood framework performances through Deep Learners. Gradient update compu-

tation and initialization are challenging areas due to which MLE algorithms often gets

stuck in the local minima [54]. Advent of DL/ML has contributed in generalizing the

gradient update framework for processing variant forms of data. Previously, signals

and systems being analyzed with a forward model contributed in system specific gra-

dient computation either analytically or numerically, which often pose computational

and tedious derivation challenges, specifically with complex biophysical models and

this complexity increased with new parameters introduced to the system. With that

said, system specific derivatives with good choice of optimization framework in MLE
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can be more powerful to rid bias and ensure specificity, which is important clinically.

As spatial networks such as CNN, U-net, GAN based models often contributes to

hallucination and systemic bias, this is often a risky bet in clinical implementation

and this recent shift in deep learner-based instructions in improving MLE can help

overcome such issue effectively [12, 54, 95].

3.4 Statistical Evaluation Frameworks

In this section, we highlight general statistical approaches used in neuroimaging re-

search. These statistical frameworks generally has two primary goals for investigation.

One is to retrieve group differences to understand pathological changes and second to

investigate correlating factors to probe insights into relevant features and biomarkers

responsible for neural pathogenesis. The statistical tests (like t-tests, Analysis of Vari-

ance (ANOVA)) are commonly used for group comparisons and involves controlling

for multiple comparisons and confounding factors.

In general, statistical evaluation comprises of the handling of large data-sets com-

monly encountered in neuroimaging studies, and hypothesis testing which involves

evaluation of p-values that enables investigation for statistical significance. Selecting

appropriate data handling strategy and representation is the key for the accurate

interpretation from the statistical evaluation (hypothesis testing).

3.4.1 Voxel Based Analysis

Representing the data voxel by voxel is the simplest and general exploratory approach

to statistical evaluation, either through group comparisons or correlation analysis

[102]. For exploratory studies that lack predefined hypotheses, conducting a voxel-

based analysis (VBA) on the entire white matter of the brain is highly suitable.
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Figure 3.5: Example comparison of diffusion tensor and free water corrected tensor
metrics (fwcDTI) using (a) TBSS and (b, c, d) GBSS analysis of HIV+ compared
with age matched healthy controls at baseline.TBSS and GBSS Skeletons are in Green.
TFCE corrected significance shown with blue(reduced) or red(increased).

While VBA is broadly beneficial in dMRI applications, it also demonstrates certain

limitations.

3.4.2 Tract Based Spatial Statistics (TBSS)

Tract Based Spatial Statistics (TBSS) is a specialized method used in the analysis

of dMRI data [103] by utilizing a skeleton derived from FA focusing on white matter

tract. Similar analysis for gray matter is called Gray matter Based Spatial Statistics

(GBSS). TBSS provides a voxel-wise analysis of multi subject diffusion data, focusing

on the alignment of white matter tracts across different subjects for comparison. The

advantages of TBSS over traditional voxel-based approaches includes improved sen-

sitivity and objectivity in detecting white matter differences. TBSS is generally used
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to study various neurological conditions and disorders, particularly those affecting

white matter integrity, such as multiple sclerosis, migraine, traumatic brain injuries,

etc. An example comparison is highlighted in Figure-3.5.

3.4.3 ROI Analysis

Region of Interest (ROI) analysis is a fundamental approach to understanding group

differences for pathological effect in neuroimaging. In particular, the idea is to focus

on specific brain areas for detailed examination. The process of selecting ROIs in-

volves registration to anatomical landmarks or functional criteria, and then statistical

analysis of data within these regions is carried out. Example shown in Figure-3.6
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Figure 3.6: Example of atlas based ROI analysis between HIV+ and Control groups
where the stiffness modulus (|G*|), a parameter relating to brain tissue elasticity
shows significantly reduced in the HIV group. JHU WM and HO cortical and sub-
cortical atlases were used for the analysis. Significant ROIs (p<0.01) are overlaid on
an MNI T1 image.
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Chapter 4

AI in Q-Space Up-Sampling:

Recovering Lost Clinical Details 1

4.1 Motivation

The application of Artificial Intelligence (AI), and particularly Deep Learning (DL)

methodologies, in the realm of medical imaging has initiated a paradigm shift, cat-

alyzing the emergence of a multitude of innovative applications. These advancements

have significantly enhanced the quality of images and have enabled the generation

of novel images from a constrained set of medical imaging data. It is, however, im-

perative to acknowledge that the predominant approaches for validating these DL

techniques in the context of medical imagery have predominantly relied on visual or

qualitative assessments, as opposed to comprehensive clinical study evaluations.

This precipitates a critical inquiry into the effects of these technological inter-

ventions on the preservation of vital quantitative clinical information within medical

images. A pivotal consideration is whether the pursuit of high-quality imagery, as

1The chapter was presented in MICCAI Challenge 2022 (QuaD’22) and partially published in
Aja-Fernández, S., Martín-Martín, C., Planchuelo-Gómez, Á., Faiyaz, A., Uddin, M. N., Schifitto,
G., ... & Pieciak, T. (2023). NeuroImage: Clinical, 39, 103483.

https://www.lpi.tel.uva.es/quad22/Results.html
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facilitated by AI techniques, might inadvertently lead to the compromise of essential

clinical data. Following this context, the efficacy of traditional image quality metrics,

such as the Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM),

and Root Mean Squared Error (RMSE), becomes a salient factor in the assessment

of AI-generated images. The fundamental criterion for these AI-enhanced images

extends beyond mere visual similarity to the original; they must also ensure the re-

tention of all critical clinical information while precluding the introduction of any

erroneous data.

dMRI is instrumental in evaluating the microstructural characteristics of the brain

and other organs [104, 105]. The integration of Deep Learning (DL) methodologies

within this domain represents an emerging and promising area of study. Notably,

DL applications in dMRI encompass several aspects of the data processing pipeline.

This includes the rectification of phase discrepancies in multishot dMRI acquisitions

[106], automated detection and elimination of image artifacts [107,108], as well as the

application of noise reduction techniques [109].

In this research, Q-space resolution of dMRI has been specifically targeted. An-

gular resolution of the Q-space in dMRI plays a crucial role in identifying details in

diseased processes of the brain [110]. For example, Figure-4.1 demonstrates the loss

of clinical details in axial diffusivity with decreased Q-space resolution [4]. Thus, in

this chapter, we focus on developing an AI strategy that aims to recover Q-space reso-

lution relevant to clinical details. We hypothesized that if the up-sampling procedure

can be guided through an equidistant delaunay triangulation sampling scheme, the

nearest-neighbor geometry could potentially generalize diffusion signal at the original

diffusion gradient direction, thus enabling us to estimate the signals, sensitive to clin-

ical changes. The hypothesis was based on the interpolation techniques to estimate

the signals for fiber orientation density estimation and tractography that had shown
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positive result in simulation and in-vivo [111–113].

To corroborate the hypothesis, we generated the training and validation samples

through a publicly (partially) available data-set from MICCAI Challenge held in

the CDMRI workshop 2022 (QuaD22) [101]. The clinical data only included single-

shell diffusion signals, that constrained our investigation only in DTI derived micro-

structural features. The clinical differences were particularly significant with axial

and mean diffusivity metrics from DTI when high angular resolution was being used.

(Family-Wise Corrected p-value <0.05)

Performance evaluation included a dual-track validation approach. Firstly, mean

squared error was employed at the training and validation stage when developing our

model. Test data did not include high angular resolution data for the participants of

the challenge & workshop before method submission, thus first blind evaluation was

done on test data with lower angular resolution.The Tract Based Spatial Statistics

(TBSS) approach was selected to assess clinical differences, which were family-wise

error corrected, across a generalized Fractional Anisotropy (FA) skeleton mapped onto

standard brain space [5]. This evaluation was conducted using high angular resolution

test data, in collaboration with the organizers of the challenge. Finally, various AI

methodologies within this field were evaluated and scored based on their performance

in Tract Based Spatial Statistics (TBSS) and Region of Interest (ROI) analyses.

The performance metrics employed for this evaluation were specifically designed to

penalize false positive outcomes to ensure clinical evaluation of the compared AI

techniques.
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Figure 4.1: Axial Diffusivity difference in Chronic vs Episodic Migraine population
(FW-corrected p <0.05) top row with 61 and bottom row with 21 gradient directions,
adapted with permission from Professor Santiago Aja-Fernández [4, 114]

4.2 Optimized Sampling of Q-space

We have utilized Iterative Maximum Overlap Construction (IMOC) and 1 Opt greedy

method for optimizing gradient directions. [115,116] The gradient directions in Lower

Angular Resolution (LAR) were optimized to represent the uniformly distributed

angular coverage. A similar approach was chosen to estimate the higher angular reso-

lution nodes (HAR). The optimization of the protocol was performed using dMRItool

in MATLAB. [29]

4.2.1 HemiHex Sub-Sampling in Q-space

HemiHex (HH) Subsampling can be regarded as subsampling the Q-space centering

on an unknown node in such a way that the known and unknown Q-space nodes

fall on approximated hexagon nodes, alternating knowns and unknowns. Hemi-Hex

interpolation refers to the regression of an unknown center node on a hemi-hex sample.
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Figure 4.2: Hemi-hex subsampling on Q-space, the center node is an unknown sur-
rounded with 3 known and unknowns.

The subsampling scheme results in more training data points per subject and thus

requires fewer subjects to be trained contextually. (Figure-4.2)

4.2.1.1 HemiHex Subsampling Prerequisites

• Both the LAR and HAR images must have optimized sampled schemes in Q-

space for diffusion protocol. Optimization makes sure that the gradients are

equidistant and the hexagonal formation is possible between the known and

unknown samples.

• The LAR gradients used must be common to HAR gradients and should be a

subset of HAR grads. Number of gradients in LAR must be 3 times the number

of gradients in the HAR.

4.2.2 Fully Connected Multilayered Perceptron

A fully connected Multi-Layer Perceptron (Figure-4.4) was used with 27x3 input layer

and one node for diffusion weighted signal output for each gradient in the Q-space

upsampling problem. The schematic diagram of the approach is elaborated in the next
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Figure 4.3: Schematics of angular upsampling of diffusion MR using contextual Hemi-
Hex sub-sampling in an optimized Q-space using HemiHex-based MLP/FCN.

chapter in Figure-4.3. The input samples are 27 dimensional, as each centering voxel

posses 26 neighbors. Based on Delaneuy triangulation geometry, for each unknown

signal, we always have 3 knowns on the sphere. The architecture is expected to be

rotation invariant because the training being generalized on the sphere due to the

inherent sampling geometry of the provided data. For each voxel, diffusion gradient

signals for 40 unknown gradients are estimated.

Further, the second dimension of the inputs were obtained by HemiHex subsam-

pling (Section-4.2), which generates training and validation data based on randomly

sampled patches on a five-tissue segmented map. Five-Tissue segmentation was gen-

erated using the fsl-fast algorithm and was done to choose differentiating ROIs that

are unique in nature. The expectation was that the local spatial information would

be encoded and learnt by the network with relevant nearest angular diffusion signals.

This was done using three subjects to finalize the training data. Validation data was
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extracted similarly from five different subjects. In total, eight subjects are used for

training and validating the network for DWI signal prediction. Since the training

takes place in regressing the fourth dimension (the dwi signals with different direc-

tions but at the same spatial position), sufficient training data is sampled from eight

healthy subjects.

The network is trained in three different phases with stochastic gradient descent

with momentum (SGDM), adam and rmsprop algorithms respectively. Successive

iterations and details on the requirement of three phase optimization is reported in

the next chapter (Figure-4.5).

4.2.3 Hemi-Hex Features with Mahcine Learning Model

A fully connected network (FCN) is used with 27x3 input layer and one node for

diffusion weighted signal output for each gradient. The schematic diagram of the

approach is shown in Figure-4.3. HemiHex subsampling generates training and vali-

dation data required for training the FCN. Spatial neighbors are incorporated in the

input domain of the learner.

The network is trained in three different phases with stochastic gradient descent

with momentum, adam and rmsprop algorithms respectively. Successive iteration

and details are reported on Figure-4.5.

ROIs were selected from GM, WM and merging areas from three subjects to obtain

the training data. Validation data was similarly extracted from five other subjects. In

total, eight subjects are used for training and validating the network for DWI signal

prediction. Since the training takes place in regressing the fourth dimension (the dwi

signals), sufficient training data is sampled from eight healthy subjects.

The input samples are 27 dimensional as each centering voxel posses 26 neighbours.
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Figure 4.4: The Multi-Layer Perceptron for Q-Space Upsampling is shown in a
schematic diagram, The layers are FC- Fully Connected, tanh, DropOut(20%) with
around 2500 learnable parameters. Red segments on five-tissue MRI map depicts
patch based random sampling of training and validation ROIs.
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Based on Delaneuy triangulation geometry, for each unknown signal we always have 3

knowns on the sphere. The architecture is expected to be rotation invariant because

the training being generalized on the sphere due to the inherent sampling geometry of

the provided data. For each voxel, diffusion gradient signals for 40 unknown gradients

are estimated.

Estimation Philosophy The network estimates DW signals for the unknown

directions trained on the variable yet close geometric patterns. The final metric of

evaluation are the DTI metrics. Once the data is upsampled, DTI is applied on the

data and the final result is generated.

4.2.4 Optimization

For training the nearest neighbor regression network, we have used three different

optimization algorithms. Stochastic gradient descent with momentum (sgdm), adam

and rmsprop algorithms successively were applied on independent training data points

to minimize the loss function. Three phase training had the same objective function

for minimization,

MSE =
D

∑
i=1

(xi − yi)
2

where, D is the number of total gradient directions for a voxel in x-space. xi

denotes the original gradient signal and yi is the predicted gradient signal inferred

from the subsampled input.

4.3 Metrics for Evaluation

This statistical investigation utilized datasets from two distinct migraine categories,

Chronic Migraine (CM) and Episodic Migraine (EM). These datasets were ana-
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(a) Three step optimization (shown in
logscale)

(b) Training Phase-1 with stochastic gra-
dient descent with momentum

(c) Training Phase-2 with ADAM (d) Training Phase-3 with RMSprop

Figure 4.5: Sequential three step optimization reduce mean squared loss linearly (y-
axis shown in log-scale).
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lyzed through the tract-based spatial statistics (TBSS) technique as delineated by

Smith and colleagues in 2006. The analysis focused on three key metrics: Fractional

Anisotropy (FA), Mean Diffusivity (MD), and Axial Diffusivity (AD). To ensure im-

partiality, the study participants were not informed about the patient distribution

across the CM and EM groups. Both the original and group-provided datasets under-

went the same TBSS procedure. The FA images extracted were non-linearly aligned

to the FMRIB-58 template within the Montreal Neurological Institute (MNI) space,

which consists of averaged FA maps. This alignment employed b-spline based regis-

tration warp fields using the FNIRT tool from FSL [117]. Post-registration, a white

matter skeleton was delineated through the thinning of an average FA image, apply-

ing an FA threshold of 0.2 for differentiating white from gray matter. The subjects’

aligned FA images were then projected onto this white matter skeleton. The MD and

AD maps were similarly registered to the MNI space and projected onto the skele-

ton using the same warp transformations as the FA images. For identifying regions

with significant statistical differences, the Johns Hopkins University ICBM-DTI-81

White-Matter Labels Atlas was used [118]. A minimum region volume of 30 mm³ was

set for statistical significance. To reduce variability, registration was performed with

fully sampled data (61 gradient directions) and then applied to the group-provided

data. The FA mask from the 61 gradients scheme was utilized for all groups. Voxel-

wise differences in FA, MD, and AD between CM and EM were evaluated using the

randomise permutation-based inference tool with non-parametric statistics in FSL,

taking into account the threshold-free cluster enhancement (TFCE) results [119,120].

This method was applied to both original and group-provided maps, using 5000 per-

mutations and a statistical significance threshold of p < 0.05 after family-wise error

(FWE) correction for multiple comparisons. Two measures, True Positives (TP) and

False Positives (FP), were used for comparative purposes. TP refers to voxels iden-
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tified in the 61-gradients reference analysis, considered the benchmark. In contrast,

FP denotes voxels marked as significantly different in the improved maps provided by

participants but not in the 61-gradients reference analysis. Additionally, sensitivity

and specificity metrics were calculated based on TP and FP ratios:

Sensitivity,

Sei =
TPi

TPi +FNi
=

TPi

TPi(Ref)
×100(%) (4.1)

Specificity,

Spi =
TNi

TNi +FPi
=

TNi

TNi(Ref)
×100(%) (4.2)

Precision,

Pri =
TPi

TPi +FPi
×100(%) (4.3)

False positive rate (FPR),

FPRi =
FPi

FPi +TNi
=

FPi

TNi(Ref)
×100(%), (4.4)

Accuracy (ACC),

ACCi =
TPi +TNi

TPi +FPi +TNi +FNi

=
TPi

TPi(Ref)+TNi(Ref)
×100(%)

(4.5)

Here, TPi(Ref) indicates the number of TP.

To evaluate the improvement over the analysis conducted with 21-gradients maps,

which were not enhanced by any methods, whether AI-based or otherwise, following

criteria was used:
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Comparing 21(Method) = ∑i (TPi(Method)−FPi(Method))−∑i (TPi(21 g)−FPi(21 g))
∑i TPi(61 g)− [∑i (TPi(21 g)−FPi(21 g))]

×100[%]

(4.6)

Here, TPi(T21g) and FPi(T21g) represent the counts of True Positives and False

Positives, respectively, for the i−th metric, as determined by the reference analysis

conducted with 21 gradient directions.

4.4 Results & Discussion

Angular Upsampling is an ill-posed inverse problem which can be made stable with

the help of tessellated geometries designed in this work through sampling. Tessel-

lated geometries ensure rotation invariant learning on the sphere (Q-space). And the

neighboring voxels provide local spatial prior to learn the tissue property for a specific

gradient. This makes sure high resolution counterpart can retain clinically relevant

information through upsampling.

The implemented approach requires significantly less computational resources

than general CNN based architectures. (We have used core i7 CPU with 16GB

memory used for training). Which took less than 10 minutes for training.

The approach is highly efficient with training resources which yields important

advantage for clinical applications and research. As less as 2/3 subjects is enough for

training and acquire the contextual information for the gradients.
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MICCAI Challenge 2022 (QUAD'22) Results
Teams University TBSS ROI Total Ranking

AF University of Rochester 25.60% 15.79% 21.30% 1
ZJUWULAB Zhejiang University 31.80% 5.26% 20.20% 2
LfB Aachen University 26.30% 10.53% 19.40% 3
AINI Harvard University 28.10% 5.26% 18.10% 4
UCL-CMIC University College London 26.30% 5.26% 17.10% 5
Ucair University of Utah 23.20% 5.26% 15.30% 6
ZJUT_IAISRC Zhejiang University 25.30% -5.26% 12.00% 7
uiowa_v2 University of Iowa 15.20% 0.00% 8.50% 8
uiowa University of Iowa 8.20% 5.26% 6.90% 9
Diffusioneers Universidade de São Paulo 14.10% -5.26% 5.60% 10
Luschka Tianjin University -1.80% -5.26% -3.30% 12
SNU_AIML Shiv Nadar University 1.40% -10.53% -3.80% 13
SaPaSt New York University -13.10% -5.26% -9.60% 14
314_JUNIORS Zhejiang University -56.10% -78.95% -66.10% 15
SNAC The University of Sydney -56.10% -105.26% -77.60% 16

Table 4.1: MICCAI Challenge 2022 (Quad’22) Results retrieved from Quad22 website

4.4.1 MICCAI Challenge 2022 Score & Standings

The challenge score and standings is shown in the Table-4.1. TBSS and ROI scores are

averaged to report the final ranking. Proposed HemiHex-based MLP preserved angu-

lar context of the Q-space, thus presumed to have resulted better than the competing

techniques. The method in average restored 21.30% of clinical differences previously

lost when using 21 directions for evaluating clinical differences in Figure-4.1.

4.4.2 Image Quality Metrics (SSIM & PSNR)

The evaluation of image quality metrics, specifically the Structural Similarity Index

(SSIM) and the Peak Signal-to-Noise Ratio (PSNR), plays a pivotal role in comparing

the effectiveness of various image processing methods. These metrics are instrumen-

tal in assessing the quality and fidelity of images processed by different algorithms,

providing a quantitative basis for comparison.

https://www.lpi.tel.uva.es/quad22/Results.html
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SSIM PSNR
REFERENCE (21 grad) FA AD MD FA AD MD
CNN 0.23 0.01 1.00 26.4 13.2 13.0
HemiHex-MLP 0.97 1.00 1.00 31.5 81.0 83.3
MESC-SD 0.97 1.00 1.00 30.8 80.6 82.7
CNN+Residual Learning 0.97 1.00 1.00 31.4 80.8 83.3
U-Net 0.97 1.00 1.00 31.5 81.1 83.4
AutoEncoder_SH 0.97 1.00 1.00 31.5 68.8 71.1
AutoEncoder 0.96 1.00 1.00 30.4 79.9 81.6
AEME (Modified MESC) 0.96 1.00 1.00 29.1 80.2 82.8
Gated U-Net 0.96 1.00 1.00 29.8 76.2 78.6
U-Net + Angular Distance 0.88 1.00 1.00 22.4 68.9 70.7
3D U-Net 0.96 1.00 1.00 29.1 79.3 80.8
SARDU-Net (Cascaded MLP) 0.97 1.00 1.00 31.4 83.2 83.2
Transformer 0.97 1.00 1.00 30.7 78.3 79.3
U-Net 0.95 1.00 1.00 28.4 78.4 80.1

Table 4.2: Comparison of visual metrics achieved through different methods. [5]

SSIM is a metric that measures the perceptual difference between two similar im-

ages. Unlike traditional methods that focus on pixel-level differences, SSIM evaluates

changes in structural information, luminance, and contrast, offering a more compre-

hensive and human-vision-centric assessment. A higher SSIM value, with a maximum

of 1, indicates greater similarity to the reference image, thus implying better image

quality.

PSNR, on the other hand, quantifies the quality of a reconstructed image com-

pared to its original version. It is widely used in the field of image compression, where

it measures the ratio of the maximum possible power of a signal to the power of cor-

rupting noise. High PSNR values suggest a low level of noise and error, indicating

higher image fidelity.

The provided table presents a comparative analysis of various image processing

methods using these two metrics. The methods range from traditional approaches
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like Convolutional Neural Networks (CNN) to more sophisticated architectures like

U-Net and its variants.

The SSIM values in the table reveal significant insights. For instance, methods like

MLP, MESC-SD, and various U-Net implementations demonstrate near-perfect SSIM

scores, highlighting their superior ability to maintain structural integrity and visual

similarity to the reference images. This is particularly important in applications where

preserving the original structure of the image is critical, such as medical imaging or

satellite image analysis.

In terms of PSNR, we observe a wide range of values across different methods.

The higher PSNR scores achieved by techniques like MLP, U-Net, and SARDU-Net

suggest their effectiveness in minimizing distortion and noise in the processed images.

These high scores are indicative of the methods’ efficiency in accurately reconstructing

images, making them suitable for applications where image clarity and detail are

paramount.

In summary, the comparative analysis using SSIM and PSNR metrics provided a

valuable insight that all the methods except CNN based approach performed well in

reconstructing visually similar results. It is important to note that visual similarity

does not conform to clinical evaluations.

4.4.3 TBSS & True and False Positive Scores

The bar chart (Figure-4.6) contrasts the performance of various image processing

methods in terms of their true and false positive detections concerning Axial Diffu-

sivity (AD) and Mean Diffusivity (MD). A true positive reflects the method’s ability

to correctly identify regions of interest (ROIs) that are genuinely affected by changes

in diffusivity, a key aspect in applications such as medical imaging, where accurate
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detection can be critical. False positives, however, indicate regions incorrectly flagged

as affected, which could lead to misinterpretation of the condition being studied.

In the context of AD, the MLP method demonstrates a high number of detected

ROIs with a balance skewed towards true positives, suggesting a high specificity.

In contrast, methods like the U-Net with Angular Distance show a lower count of

detections but with a high proportion of false positives, indicating a tendency towards

overestimation of affected areas.

For MD, the chart indicates that methods such as Gated U-Net and SARDU-Net

(Cascaded MLP) have a relatively high detected ROI count with a favorable ratio of

true positives, indicating effective detection capability for mean diffusivity changes.

The U-Net (3D) and AutoEncoder_SH also show substantial true positive detections,

albeit with some false positives, suggesting a need for further refinement to reduce

over-detection while maintaining sensitivity.

We speculate that, spatial architectures are prone to hallucinations, thus more

false positives results in clinical evalution. On the other hand the contextual sam-

pling of features on Q-space with hemihex MLP doesn’t rely on spatial learning,

which is likely the reason for showing better performance in retrieving diseased ROIs

accurately.

4.4.4 Training Resources & Efficiency in Clinical Applications

In the realm of clinical applications, the judicious use of training resources is crucial,

particularly due to the limited availability of annotated datasets and the pressing

need for swift development of diagnostic models. The table delineates image process-

ing methods into three categories: sparse, spatial, and sequential, each reflecting a

different approach to resource utilization and training strategy. This categorization is
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Figure 4.6: True and False Positive ROIs detected in Axial and Mean Diffusivity
by different methods (Sorted by Ranking). Data for comparison were obtained from
CDMRI’22 workshop. HemiHex-based MLP is our proposed approach [76], compared
to other techniques, results reported from [5]
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Methods TRAINING VALIDATION TESTING Loss Function
(Training)

CNN 45 5 10 MSE
HemiHex-MLP 3 5 105 RMSE
MESC-SD 36 9 15 MSE
U-Net +
Angular
Distance

50 5 5 Perceptual loss

U-Net 54 3 3 MSE
AutoEncoder_SH 5 5 50 MSE
AutoEncoder 5 5 50 MSE
AEME
(Modified
MESC)

7 1 2 MSE

Gated U-Net 60 60 60 MAE
CNN+Residual
Learning

44 10 6 normalized
RMSE

3D U-Net 40 20 20 PSNR
SARDU-Net
(Cascaded
MLP)

48 6 6 MSE

Transformer 32 8 5 RMSE
U-Net 40 10 10 FA: MSE / AD,

MD: MAE

Table 4.3: Number of subjects in each approach for training, validation, and testing,
along with the loss function used for training procedure [5]

vital in clinical contexts where the scarcity of data and the immediacy of application

are key concerns.

Sparse Methods: The MLP (HemiHex) method is a prime example of a sparse

approach, using a remarkably small number of training subjects (3), but extensively

tested on a larger set (105 subjects). This method, which employs RMSE as the loss

function, is particularly advantageous in clinical scenarios where data is a premium

and the focus is on validating the algorithm’s effectiveness across a broad spectrum

of cases with minimal training resources.
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Spatial Methods: Spatial methods are typified by Gated U-Net, which employs

an evenly distributed dataset for training, validation, and testing (60 subjects each).

The choice of MAE as the loss function points to an emphasis on reducing errors

across the image space. While this approach demands a more substantial dataset,

it is suited for scenarios where spatial precision is imperative, and ample data is at

hand.

Sequential Methods: Sequential methods, such as AEME (Modified MESC),

adopt a training regime that is characterized by a sequential progression through

phases with a modest number of subjects, as evidenced by its 7 subjects for training

and very limited numbers for validation and testing. Utilizing MSE as the loss func-

tion, this method is optimized for scenarios where sequential learning from a small

dataset is necessary, which is often the case in clinical settings where patient data is

subject to stringent privacy regulations and may not be readily accessible.

The MLP (HemiHex) as a sparse method and AEME (Modified MESC) as a

sequential network stand out for their efficiency in resource utilization. The sparse

nature of MLP (HemiHex) underscores its potential in clinical settings where it’s

critical to maximize learning from a minimal amount of data. On the other hand, the

sequential approach of AEME (Modified MESC) reflects the method’s adaptability

to the stepwise availability of data, which is a common scenario in ongoing clinical

studies. Both approaches are indicative of the strategic use of resources, ensuring

that despite data limitations, the development and validation of diagnostic models

can be carried out effectively and expediently, catering to the urgent demands of

clinical application.
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4.5 Limitations & Future directions

We proposed a fully connected regression network integrating the philosophy of geo-

metric distribution and interpolation of DWI data. The low resource need and ease

of computation makes the approach more suitable for use in single-shell dMRI clinical

studies.

The proposed approach only up-samples diffusion signals for protocols with uni-

formly distributed directions that is optimized with IMOC algorithm, whereas in most

real clinical scenarios the diffusion directions are often un-optimized. Our future ob-

jective involves accounting for un-optimized clinical protocols by incorporating zonal

Q-space features in our model.
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Chapter 5

Single-Shell NODDI Reconstruction:

Simulation Study1

5.1 Motivation

NODDI was proposed as one of the practical biophysical models which can probe

deeper into different compartments of tissue system that co-exist together in brain

at mesoscale. One of the prerequisite to identify different compartments is to have

the knowledge for the behaviour of diffusing particles at a particular direction over

time. In chapter-2 (Section-2.4), we have showed that the diffusing relationship with

time still holds, and can be proxied by sampling of sets of Q-spaces with different

b-values. Sets of Q-spaces are also termed as shells. Thus, diffusion protocol with

multiple sets of Q-space with different b-values are called multi-shelled protocols. In

clinical diffusion data, we are required to use single-shell data to characterize multiple

compartments, which is deemed an ill-posed problem for NODDI [8].

In this chapter, we focus on understanding the ill-posed-ness of the single-shell

1The chapter was presented in Proc. Intl. Soc. Mag. Reson. Med. 29, 2021 and published in
Faiyaz, A., Doyley, M., Schifitto, G., Zhong, J., & Uddin, M. N. (2022). NMR in Biomedicine,
35(2), e4628.
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Figure 5.1: Single-shell data cannot reconstruct NODDI (NDI, ODI, fISO). Three
parameters are merged in HSV space for combined viusalization

problem in simulation. We conditioned the free NODDI parameters in order to in-

vestigate if the problem can be stabilized in simulation.

Performance evaluation included a dual-track validation approach. Firstly, mean

squared error was employed at the training and validation stage when developing

our model. Test data did not include high angular resolution data for the partici-

pants of the MICCAI challenge & workshop [101] before method submission, so blind

evaluation was done on test data with lower angular resolution. Then, Tract Based

Spatial Statistics approach was opted to evaluate the family wise corrected clinical

differences on a generalized FA-skeleton on standard brain space [5] based on the high

angular resolution test data in collaboration with the host of the challenge. Finally,

different AI approaches in the field was scored based on the TBSS results. The per-

formance metrics for evaluation was tailored to penalize false positives outcomes by

any methods.

5.2 Simulation Study Design

This section outlines the comprehensive approach used in our study to evaluate the

DLpN framework in conjunction with NODDI. This methodology closely mirrors the



CHAPTER 5. SIMULATION STUDY 73

original NODDI study, but incorporates additional cases to explore a wider range of

micro-structural effects.

5.2.1 NODDI Distribution in Healthy Human Brains

For this investigation, MRI scans from three anonymized participants, randomly cho-

sen from the Human Connectome Project (HCP) dataset, were utilized. This dataset

is publicly accessible and is provided by WU-Minn HCP (release-Q3 32). All individu-

als involved in the study gave their written consent, and the research received approval

from the appropriate institutional review board (https://db.humanconnectome.

org/data/projects/HCP_1200).

The acquisition of multi-shell dMRI (dMRI) images was carried out using a

Siemens 3T Connectome scanner located in Erlangen, Germany. The images were ob-

tained using the Spin Echo- Echo Planar Imaging (SE-EPI) technique, characterized

by a repetition time (TR) of 5520 ms and an echo time (TE) of 89.5 ms. The imaging

parameters included a field of view measuring 210 x 180, an isotropic voxel size of

1.25mm, a multiband factor of 3, and the collection of 90 gradient directions across

each shell at b-values of 1000, 2000, and 3000 s/mm2, along with 18 b=0 s/mm2 ref-

erence images. The duration for scanning each shell was approximately 9:50 minutes.

Subject data underwent corrections for bulk motion, susceptibility-induced distor-

tions, and eddy currents as outlined in [121]. More details about the scanning pa-

rameters and protocols are available at http://protocols.humanconnectome.org/.

In this investigation, the computation of microstructure parameters, including

Neurite Density Index (NDI), Orientation Dispersion Index (ODI), and fractional

isotropy fISO, was performed using the NODDI toolbox. These calculations were

based on a complete set of 270 diffusion gradients (denoted as Pall) and were treated

https://db.humanconnectome.org/data/projects/HCP_1200
https://db.humanconnectome.org/data/projects/HCP_1200
http://protocols.humanconnectome.org/
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Figure 5.2: NODDI parameter (NDI, fISO, ODI) distribution in three healthy control
subjects from HCP

as quasi-ground truth for the study. The distribution for three healthy subjects is

observed in Figure-5.2 with the help of a 3D Gaussian colormap ranging from 0 to 1.

The probabistic distribution motivated the later simulation performed in selection of

microparamters (Section-5.2.2).

5.2.2 Microstructure Parameters for Simulation

The core of our simulation involved synthesizing MR signals based on known ground-

truth tissue micro-structures. Key parameters included the isotropic volume fraction
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Protocols b-values (number of gradients)
P1 b1000 (90)
P2 b2000 (90)
P3 b3000 (90)
P12 b1000(90) + b2000 (90)
P13 b1000(90) + b3000 (90)
P23 b2000(90) + b3000 (90)
Pall b1000(90) + b2000 (90) + b3000 (90)

Parameters Ground-truth values
NDI 0.2,0.4,0.6,0.8
fISO 0,0.12,0.25,0.4,0.5,0.75,1
a(radii) 0.5,1,2,4 µm
κ(ODI) 0,0.25,1,4,16
µ(θ ,ϕ) 254 Q-space directions

Table 5.1: Diffusion MR protocol & key parameter values for DWI simulation

Figure 5.3: NODDI parameter (NDI, fISO, ODI) based simulated data inspired from
the distribution in healthy human brain

( fISO), which is generally negligible in white matter (WM) but significant in gray

matter (GM) and regions contaminated by free water. To this end, we simulated

fISO values of 0, 0.12, 0.25, 0.4, 0.5, 0.75, and 1, allowing for a comprehensive exam-

ination of both WM and GM structures. For each tissue type, representative model

parameters were chosen, encompassing 640 different micro-structural configurations

across 254 uniformly sampled Q-space directions. Example healthy human brain in-

spired fISO distributions and CSD configurations of simulated diffusion signals from

the distributions are shown in Figure-5.3 and 5.4 respectively.
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Figure 5.4: Close Visualization of Constrained Spherical De-convolution based SH
representation of simulated diffusion data.

5.2.3 Simulation Protocols

The simulation strategy, as previously detailed in [8], involved the use of the pub-

licly available NODDI toolbox (version 1.01), accessible at http://mig.cs.ucl.ac.

uk/index.php?n=Tutorial.NODDImatlab. We customized the initialization of this

toolbox to meet our specific requirements, particularly focusing on varying axonal

diameters, denoted as a.

The comprehensive set of protocols selected for these simulations, which encom-

passed 90 directions on the Q-space for each of three b-value sampling, is detailed in

Table 5.1. For reference in Table-5.1, b1000 indicates a b-value of 1000 s/mm2 and so

on. The number of gradient directions determined the length of the diffusion signal

being simulated. Multi-shell protocols used in the simulation are P12, P23, P13 and

Pall as referenced in Table-5.1

http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.NODDImatlab
http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.NODDImatlab
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For the quantitative analysis of the synthesized signals, the ’dtifit’ tool from FSL

was employed. This tool facilitated the computation of the Mean Diffusivity (MD)

and the baseline signal S0 (i.e. T2w signal) of the synthesized data. Finally, the

Signal-to-Noise Ratio was set at 20dB by incorporating Rician noise, to mimic realistic

MRI conditions in the diffusion signal.

5.3 Proposed Architectures for Single-Shell NODDI

Dictionary-based Learning prior NODDI (DLpN)

Figure-5.5 illustrates the schematic of the proposed DLpN network. The DLpN

approach separates the estimation of fISO adopting a dictionary based learning strat-

egy termed as “DictNet” (Section-5.3), and then fits for the other non-linear parame-

ters posed in the NODDI problem with a Rician noise model. In this framework, the

NODDI toolbox was modified to use fISO as a known parameter [8]. Once we have

an approximation of the fISO, the Rician log-likelihood framework can be employed

to solve the inverse problem of identifying NDI and ODI. Considering the estimated

likelihood based on the dMRI signal, the initial parameters are selected from the grid

search. Since fISO is already approximated from the dictionary framework, the grid

search complexity is reduced. We fit the parameters by minimizing the negative of

Rician log-likelihood defined as follows:

L
(
NDI,κ,θ ,ϕ | fISO,d∥,dISO

)
=− log

N

∏
i=1

Mi

σ2 e−
(M2

i +A2)
2σ2 Io

(
AMi

σ2

)
(5.1)

which is similar to the NODDI problem, except that the initial fISO prior is esti-

mated with DictNet. In the Equation 5.1, A is synthesized and M is the measured

signal, NDI is the neurite density index,κ term is inversely proportional to ODI
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Figure 5.5: Schematic of the proposed DLpN. The stochastic dictionary learning
framework (DictNet) estimates fISO prior and then used with NODDI Rician log-
likelihood estimation steps for NDI and κ mapping. A) DictNet, B) DLpN.
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(Equation 3.8), fISO is the isotropic volume fraction, and σ is the estimated standard

deviation from the measured signal per voxel, θ and ϕ are the fiber directions initially

estimated from the weighted least squared DTI fitting, then fitted with NDI and κ

in the NODDI framework.

Adapted Multilayered Perceptron: DictNet is a sparse dictionary based

learning strategy that has been devised based on previous deep learner models [87,122]

to estimate fISO. Typically, with a known sparse dictionary ϕ , the coefficients f can

be assessed by an l1-norm regularized least squares problem

f̂ = argmin
f≥0

∥ϕ f − y∥2
2 +λ ′∥ f∥0 (5.2)

where y is the ground-truth parameter. λ ′ is an adjustable parameter to con-

trol the sparsity level of f . This was resolved using the IHT algorithm [123] by

the following formulation used in Microstructure Estimation using a Deep Network

(MEDN) [122].

f t+1 = Hλ
(
Ldin +D f t) (5.3)

where t is the iterative index, L and D are layers determined by the sparse dictio-

nary ϕ , and Hλ (·) is a thresholding function with λ > 0.

Hλ (x) =


0, x < λ

x, x ≥ λ
(5.4)

The thresholding function is defined by a parameter λ , which is related to λ ′. din

is the normalized diffusion signal cascaded with 3 × 3 × 3 spatial data.

Previously proposed deep architecture models, such as MEDN, Advanced MEDN
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(PMEDN) (Ye, 2017) and Microstructure Estimation with Sparse Coding Network

(MESC-Net) [87] used 8 iterations of IHT in its original and modified forms. However,

this redundant iterative process can be reduced by seeding a stochastic vector to

resemble a generative model. By replacing the iterative scheme with a constant

stochastic layer, we can eliminate unnecessary weight vectors, thereby saving memory

and training time, as follows, for the estimation of f I of a voxel without hindering

performance.

f I = Hλ (Ldin +Dd) (5.5)

This is illustrated in Equation (5.5), where d is the constant stochastic vector,

the basis on which the dictionary ϕ is built. Now, to incorporate important f I priors

such as MD and S0 in the dictionary ϕ , the following layers were added, accounting

for Equation (5.5).

f = Hλ
(
MD ·LMD +S0 ·LS0 + f I ·LnISO

)
(5.6)

where, LMD, LS0, and L(nISO) weigh MD, S0, and f I respectively in single-shell f I

learning. The generated coefficient vector f contributes to a fully connected feedfor-

ward network to estimate f I. The final contribution was thresholded with a threshold-

ing ReLU function, similar to PMEDN defined in Equation 5.4. However, Equation

(5.6) is only valid for single-shell cases; for multishell cases, the fISO of Equation (5.5)

contributes to the fully connected feedforward network for the estimation of f I.

The DictNet differs from other conventional deep learners (e.g., PMEDN [91],

MLP [96]) in several key aspects:

• Conventional deep learners for NODDI focused on reducing only the diffusion

gradients without changing multi-shell configuration of the protocol, whereas
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our proposed network mimics the behavior of these conventional deep learners

with the seeding of a constant stochastic vector and focuses on generating fISO

with single-shell.

• Seeding of the constant stochastic vector guides the in vivo training, and we

sensitize the model on the simulated data in the process, which is not done in

previous approaches (PMEDN or MLP).

• Our model accounts for T2w i.e., non-diffusion weighted signal S0 (inherently

collected as b0 images) and MD in training. We provide empirical evidence in

the NODDI simulation that the use of S0 and MD allows the model to estimate

single-shell fISO more accurately than other approaches.

• It requires 8-fold less memory and reduced time compared to conventional ap-

proaches, as the stochastic vector initialization helps in quick learning.

5.4 Results

We reconstructed the NODDI parameters from synthesized dMRI signals with pro-

tocols defined in Table 5.1 by initializing the model with a known fISO introduced

with random 0 to 5% error. The simulation results obtained with fISO=0 were the

same as in the original NODDI paper [8] (not shown). However, with additional fISO

cases, we found different results, and our precursory investigation with synthetic data

simulation supports that NDI and ODI can be reconstructed reliably from single-shell

dMRI imaging data if fISO is used as a prior. The estimation results for NODDI with

fISO=0 and additional fISO cases are described below.
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Simulations DWI protocol NDI ODI fISO Fitted Results
Experiment-1 Single-shell known unknown unknown Ill-posed
Experiment-2 Single-shell unknown known unknown Ill-posed
Experiment-3 Single-shell unknown unknown known Approx. GT

Table 5.2: fISO determined as the bottleneck parameter in Rician Log-likelihood
fitting of simulation data in experiment-3 where NDI, ODI was fitted parameters and
fISO was known.

5.4.1 Conditioning Single-Shell NODDI Problem

5.4.1.1 fISO as the Conditioning Parameter

Figure 5.6 illustrates the NDI reconstruction for different protocols with DLpN and

original NODDI fittings. However, using the synthetic data generated with additional

fISO plausible cases, we show that NODDI fitting resulted in NDI deviation (upward

bias) from the ground-truth with multi-shell protocols for NDI ground-truths of ≤ 0.4

(Figure 5.6). We also found the downward bias with high variance for single-shell

protocols reconstructed with NODDI model except at the ground-truth NDI=0.2. In

contrast, we observed that fISO prior reconstruction in DLpN can result in NDIs with

markedly improved accuracy and precision in both single- and multi-shell cases. This

illustrates that independent estimation of fISO may lead to a better estimation of NDI.

However, some deviations from the ground-truth values were observed in the case of

protocol P2 and P3 at lower NDI. This could probably be because measurements at

high b-values may not support tortuosity constraints (in the GM or lower NDI region)

posed by the NODDI model∼35 or lower SNR for higher b-values.

Figure 5.7 illustrates that ODI reconstruction with proposed DLpN and NODDI

fittings for different protocols and ground-truth values. We found similar trends in

ODI for both DLpN and NODDI fittings, however DLpN had a lower variance for all

protocols. Consistent with previous NODDI reports, bias and variance are low for the
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Figure 5.6: Neurite Density Index Results with conditioned fISO. GT -Ground Truth.
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ground-truth values of ODI less than 0.5. Variability of ODI for higher ground-truth

values is related to the ODI itself. Physically, orientation distributions corresponding

to large ODIs (e.g., 0.5 to 1) are not very different from one another and the high

variance reflects the lack of difference due to its inherent mathematical definition.

More details can be found in the original NODDI report [8]. It should be noted that

a higher ODI corresponds to highly dispersed neurites, mainly residing in GM and

has been previously shown to improve with the number of gradient directions used

without any dependency on the number of shells [8].

5.4.1.2 fISO Conditioned Result In-vivo

To prove the concept from the observed result of the simulation, we performed the

conditioning experiment on one of the HCP subjects acquired with protocols detailed

in 6.2.1. fISO used in conditioning the single shell estimation of NDI was obtained

from the multi-shell NODDI fitting. The map obtained was similar to multi-shell

derived NDI demonstrated in Figure-5.8.

5.4.2 Estimation of Independent fISO with Single-Shell

The findings from the previous sections indicated that, estimation of fractional isotropy

or fISO is the key to get Neurite Density and Orientation Dispersion sensitivity.

In this section we have utilized DictNet (Section-5.3), which is an adapted multi-

layered perceptron without any prior information to compare the single- and multi-

shell derived results with NODDI.

Dictionary-based network (DictNet) with no priors estimated fISO at ground-

truth values A) 0, B) 0.12, C) 0.4, D) 0.75, E) 1 (indicated with a dashed line) on

the simulation test-set with defined protocols P1, P2, P3, and Pall for different NDI
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Figure 5.7: Orientation Dispersion Index Results with conditioned fISO. GT - Ground
Truth.
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Figure 5.8: Invivo NDI estimation using multi-shell derived fISO using single shell
protocol P1. Multishell derived NDI is shown for reference.

ground-truth values provided in Figure-5.9. We found evidence that, the fISO val-

ues derived from DLpN (without priors) outperforms single-shell NODDI (NODDIP1,

NODDIP2, NODDIP3) but was not close to the ground truth values defined in the syn-

thetic simulated data. Thus, single-shell reconstructed fISO with DictNet(no priors)

failed to estimate accuracy neurite density in simulation.

5.5 Discussion

In this work, we demonstrate that NODDI parameter maps such as NDI and ODI were

reconstructed from single-shell diffusion data using a dictionary-learner-estimated

fISO as a prior with high accuracy.

In order to generate fISO values from the single-shell data, we devise a network

that takes advantage of the IHT strategy used in previous studies. [87, 91]. We

propose a non-iterative scheme of IHT where a constant stochastic layer determines

the learning of dictionary coefficients by the spatial-angular sparse data from the
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simulated data-set based on the protocol obtained from the in-vivo data 5.3. The

generated coefficient vector contributes to a fully connected feed-forward network to

estimate the fISO. The network did not incorporate any additional imaging modalities

when estimating fISO. In this work we saw, single-shell alone with an estimator was

not sufficient to independently generate fISO.

5.6 Limitation & Future Direction

Our simulation experiment revealed that single-shell NODDI was possible if and only

if the fISO parameter could be accurately estimated or known. But even with rigorous

training with simulation data using a dictionary-based machine learning model, we

were unable to estimate single-shell fISO.

To our knowledge, we are the first to study NODDI in a single-shell setting.

Although the experiment revealed a promising workaround, it was limited by the

estimation of fISO. This limitation has been addressed in the next chapter.
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Chapter 6

AI in Single-Shell NODDI:

Application & Clinical Validation1

6.1 Motivation

In Chapter-5, it was observed that by conditioning fractional isotropy ( fISO) param-

eter of NODDI, we can stabilize the single-shell problem. However, this approach

necessitated independent estimation of the fISO. However, we observed from the sim-

ulation that, estimation of fISO was not straightforward with Multi-Layer Perceptron

or dictionary-based networks.

In this chapter, we hypothesized that any multi-modal MR contrast that accounts

for tissue water density holds the potential to estimate fISO when integrated to the

tested machine learning framework. So, clinically available contrasts i.e. T2-weighted

MRI and mean diffusivity contrast were integrated to test our hypothesis, first in

simulation and then applied in-vivo for further investigation. Objective validation

was performed with a Rician log-likelihood function and evaluated with ROI-based

1The chapter was partly published in Faiyaz, A., Doyley, M., Schifitto, G., Zhong, J., & Uddin,
M. N. (2022). NMR in Biomedicine, 35(2), e4628.
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correlation analysis and error values.

Postmortem studies have established that one of the most noticeable changes in

brain anatomy and size occurs due to aging, which initiates and advances atrophy

in gray and white matter [124]. Aging is correlated with an increase in the overall

amount of cerebrospinal fluid (CSF), as well as the fluid found within the brain’s ven-

tricles, known as intraventricular CSF (iCSF), as reported in the research by Giorgio

et al. [125] and Statsenko et al. [126]. Therefore, our in-vivo investigation included

evaluation of the sensitivity of single-shell derived neurite density, free water (frac-

tional isotropy), and neurite orientation dispersion in aging and also in the cognitive

performance of clinical and control subjects.

6.2 Data Acquisition & Quality Comparison

In this section, datasets with different quality are utilized to compare reconstructions

in different signal-to-noise scenarios.

6.2.1 High Quality Data: Human Connectome Project

De-identified MRI images from 8 subjects selected randomly from the publicly avail-

able Human Connectome Project (HCP) dataset provided by WU-Minn HCP (release-

Q3 32) were used. All subjects provided written informed consent and the study was

approved by the institutional review board (https://db.humanconnectome.org/

data/projects/HCP_1200).

Multishell dMRI images were acquired using a 3T Connectome scanner from

Siemens in Erlangen, Germany using the SE-EPI sequence with a repetition time

of 5520 ms and echo time of 89.5 ms. The field of view was 210 x 180, the voxel

size was isotropic at 1.25 mm, the multiband factor was 3, and 90 gradient directions

https://db.humanconnectome.org/data/projects/HCP_1200
https://db.humanconnectome.org/data/projects/HCP_1200
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were acquired for each shell with b values of 1000, 2000 and 3000 s/mm2 and 18

b=0 s/mm2 reference images. Each shell took around 9:50 min to scan. The subject

data was corrected for bulk motion, susceptibility-induced, and eddy current distor-

tions [121]. Further information on the scan parameters and study protocols can be

found at http://protocols.humanconnectome.org/. In this study, microstructure

parameters (NDI, ODI, fISO) were computed using the NODDI toolbox with a full

set of 270 diffusion gradients (i.e., Pall) and considered as the pseudo ground-truth.

6.2.2 Clinical Data: Cerebrovascular Small Vessel Disease

In addition, we tested our approach to HIV participants with cerebrovascular small

vessel disease (CSVD) from an ongoing study at the University of Rochester. The

participants provided written informed consent prior to the scans, and the study was

approved by the University of Rochester’s Research Subject Review Board (RSRB).

Briefly, 66 subjects (34 Controls and 32 HIV+ subjects) were used to test our ap-

proach. Two healthy subjects were used for training and rest as test data. The

dMRI scan was performed using 2D SE-EPI sequence (TR=4300ms; TE=69.0ms;

FOV=256×256; resolution=1.5mm isotropic, 64 gradients per shell with b=1,000

and 2,000 s/mm2 with 7 b=0 s/mm2 reference images). In order to facilitate the

training of our model, we scanned two volunteers with the same protocol as above

along with an additional b=3000 s/mm2 for the same 64 gradient directions.

Synthetic data In order to evaluate the DLpN framework together with NODDI,

we utilized known ground-truth tissue micro-structures for different protocols and

synthesized MR signals, as similar to the approach used in the original NODDI

study [49], with fISO = 0 as well as with additional fISO cases reported in Table-

5.1. The fISO is negligible in WM [127], but to investigate the underlying effect of

http://protocols.humanconnectome.org/
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GM structures and free water contaminated ROIs, additional fISO cases of 0.12, 0.4,

0.75, 1 were added in the simulation experiment. The simulation strategy is de-

scribed previously [8]; we have used the publicly available NODDI toolbox (version

1.01, http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.NODDImatlab) and modi-

fied the initialization to fit the simulation needs for different diameters, a. To simulate

tissue configurations of WM and GM, model parameters were set to representative

values for both tissue types. The selected set of parameters in simulation is reported

in Table-5.1. The parameter set accounts for 400 different microstructure configu-

rations in 254 uniformly sampled Q-space directions, termed as mean orientation,

µ(θ ,ϕ). Different mean orientations were used to create synthetic training and test

datasets. FSL’s “dtifit” tool was used to calculate the MD and S0 of the synthesized

signals. Note that Rician noise of 20dB was added to the synthetic data.

6.2.3 Data Analysis

Harvest-Oxford (subcortical GM) and JHU-ICBM (WM) atlases were used to cal-

culate regional averages in the standard space (1mm) in predefined ROIs. Pearson

correlation tests were used to test the associations between two variables. A p-value

of < 0.05 was considered statistically significant.

All the data processing and analysis were performed using Python (v2.7.16), Keras

(v2.0.5), MATLAB 2019a (MathWorks Inc., Natick, MA, USA), FSL (v6.0.0) and

ANTs (v2.1.0).

6.3 Training, Validation & Test

Initially, the DicNet network is trained with the simulated data. The synthetic sim-

ulated dMRI data (Section-6.2.2) with Rician noise (20dB) accounts for a greater

http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.NODDImatlab
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Figure 6.1: Signal-to-noise ratio (SNR) of the dMRI data for Human Connectome
Project with connectome research scanner and CSVD clinical data, shows the signif-
icant SNR differences as higher gradient strengths are in use.

number of tissue configurations than the tissue configurations expected from a single

brain. The initial state of the network is obtained by minimizing the error in the

simulated data for the stochastic vector d.

N0 = YS

[
min

d
N(d,S)

]
(6.1)

Let S be the synthetic training set, N the current network state, N0 the updated

state obtained at the end of the current epoch, and ϒS denote training based on the

minimized network state by d with data S. Seeding is performed 10 times (chosen

empirically), and the state that minimizes the error is updated as the current state

of the network and further trained with the synthetic training set. If the d vector

cannot result in a minimized state for the current epoch, training takes place with

the current state of the network. The training and validation loss per epoch for fISO
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Figure 6.2: Demonstration of minimum error with data sampling from two subjects.
Training with higher number of subjects suggests over-fitting dictionary based net-
work.

with DictNet and PMEDN are available in Faiyaz et al [12].

In-vivo training starts from the final N0. With 8 randomly selected subjects, we

used HCP dMRI data from 2 subjects as the training set, and the remaining subjects

were used for testing. The number of training subjects was chosen based on results

reported in Figure 6.2. We found that if the number of training subjects is greater

than three, the network is more prone to overfitting. Overfitting after training with 3

subjects is seemingly because the training was performed voxel-wise and for any brain

in general, the number of possible tissue configurations are limited. So, the increment

of training subjects indicates the increment of additional sets of similar data samples,

which the network is already familiar with. For two subjects, we had masked brain

voxels (each around 145 × 174 × 145 samples minus the background) for training

where 15% subjects was used for cross-validation in each epoch, with a maximum of

10 epochs. In the train/test phase, the dMRI signal was normalized with the mean
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non-diffusion weighted b0 image and used as input for the network.

For the in-vivo training, the pseudo-ground-truth microstructure parameters (NDI,

ODI, and fISO) were calculated using the NODDI method with the complete set of

270 diffusion gradients. The focus of the DLpN reconstruction was on retrieving the

fISO prior, so the fISO prior was trained and estimated using the DictNet. To evaluate

the DLpN NDI and ODI reconstructions, the other pseudo-ground-truth parameters

(NDI and ODI) were used based on the percentage differences and by maximizing

the objective function. To make the dictionary stable for single-shell cases, the mean

diffusivity (MD) and the non-diffusion weighted signal intensity (S0) were obtained

for both the synthetic data and the in-vivo data using a single-shell protocol, and

were used in constructing the fISO dictionary. The same procedures were followed for

the CSVD dataset.

6.4 Results & Discussion: Incorporating T2-w and MD

Priors

In order to test our hypothesis of using T2-weighted (aka S0) and Mean Diffusivity

(MD) priors, we integrated them with DictNet. The performance evaluation was done

initially in simulation where DictNet training with and without priors were performed

keeping the training parameters identical and then their usefulness was demonstrated

in estimating fISO compared to state-of-the-art free water fISO estimators, and in

extreme parametric scenarios. Finally, the approach was evaluated in-vivo in both

high quality and clinical quality dMRI.
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6.4.1 Simulation

6.4.1.1 Performance with & without T2-w (S0) and MD Priors

Dictionary-based network (DictNet) estimation of fISO with and without T2-w (S0)

and MD at ground-truth values A) 0, B) 0.12, C) 0.4, D) 0.75, E) 1 (indicated with

a dashed line) on the simulation test set with defined protocols P1, P2, P3, and

Pall for different NDI ground-truth values provided in Table-5.1. We found evidence

that, the fISO values derived from DLpN (with or without S0 and MD initialization)

outperforms single-shell NODDI (NODDIP1, NODDIP2, NODDIP3). Further, using

T2-w (S0) and MD prior improves the performance of DictNet, and fISO values are

closer to ground-truth values as illustrated in Figure 6.3.

6.4.1.2 Comparison of State-of-the-art Free Water fISO Estimators

Comparison of the simulation of DictNet derived fISO with bi-tensor model-based

FW (both for single- and multi-shell), deep learner based PMEDN and NODDI with

different protocols show that DictNet derived fISO estimation is stable with single-

shell P1 and P2 protocols, compared to that of other approaches (Figure 6.4). It is

evidently because these approaches do not incorporate either priors (T2-w (S0), MD),

and dictionary accounted for the simulated complex tissue microstructures as done

for DictNet.

6.4.1.3 Evaluation of extreme parametric scenarios

Evaluation of extreme cases was carried out with two cases-

• Low NDI and normal fISO.

• High NDI and high fISO.
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Although, the extreme scenarios are unlikely in normal tissues in a healthy brain,

it is not impossible to observe in neuro-pathogenic cases. Also, it is worth mention-

ing that such scenarios are not directly accounted for training single-shell DictNet.

The evaluation of our single-shell approach with multi-shell NODDI suggests the re-

sults are ill-posed for both cases but identical. However, both (DLpN P1 & NODDI

P12) are evidently better than single-shell estimation from original NODDI, shown

in Figure-6.5.

6.4.2 In-vivo

In this section, high quality HCP and clinical HIV-CSVD cohort results are presented

in three subsections. First, DLpN and NODDI results are shown with ground truth

differences for subsequent single and multi-shell protocols. Here, the difference maps

were computed referencing NODDI multi-shell as ground-truth. Then in 6.4.2.2,

objective evaluation were done using Rician log-likelihood surrogate (Equation-6.2).

Here, the objective function measures the similarity between reconstructed diffusion

signal with scanner derived signal. In the last subsection, qualitative SNR comparison

for single- and multi-shell reconstruction is done for two data-sets.

6.4.2.1 DLpN in High Quality HCP & Clinical HIV-CSVD

The in-vivo NODDI and DLpN reconstructions are visualized with their HSV col-

ormaps (Section-3.2.2.1) in Figure-6.6. It demonstrates single-shell NODDI recon-

structions are not reliable with original NODDI method. Their individual parameter

maps and ground-truth difference maps are elaborated in Figures-6.7, 6.8 & 6.9.

Further, the parameter maps are individually analyzed with their difference maps

to compare with the ground truth. Figure-6.7(A) represents fISO maps reconstructed
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Figure 6.5: Extreme case estimation distribution for NODDI and DLpN, with ground-
truth parameters shown for single-shell protocol P1 (i.e., b=1000 s/mm2) and multi-
shell protocol P12 (i.e., b=1000 s/mm2 and b=2000 s/mm2). Left column represents
high MD and high fISO cases corresponds to low NDI and normal fISO (i.e., NDI =
0.2, fISO = 0.12 in Figure 6.4) while right column represents normal MD and high fISO
corresponds to the case of high NDI and high fISO (i.e., NDI = 0.8, fISO = 0.4-0.75
in Figure 6.4). Note GT: ground-truth.
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Figure 6.6: Combined parameter maps ( fISO, ODI & NDI) are shown per protocol
in HSV colorspace (Section-3.2.2.1), demonstrating single-shell and multi-shell recon-
structions from DLpN and NODDI.
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Figure 6.7: A) A representative axial view of the fISO maps estimated with proposed
DictNet and NODDI for different protocols. Note, NODDIPall fISO is considered as
pseudo-ground-truth fISO and used as training data for DictNet; B) Difference maps
for DictNet fISO and NODDI fISO with respect to NODDIPall fISO for defined protocols.
Intensity scales are shown.

using DictNet independently with priors, and NODDI for single- and multi-shell pro-

tocols. The fISO difference maps between the pseudo-ground-truth (i.e., NODDIPall)

and DictNet along with NODDI with both single- and multi-shell are shown in Figure

6.7 (B). From the difference maps, it is evident that DictNet outperforms NODDI for

single-shell protocols (P1, P2, P3) as well as for two-shell protocols (P12, P13, P23)

with respect to the pseudo-ground-truth. Similarly, The NDI and ODI maps were

shown for DLpN and NODDI fittings with different protocols in the human brain

respectively in Figure 6.8(a)(A) and Figure 6.8(b)(A); and corresponding difference

maps are shown in Figure 6.8(a)(B) and Figure 6.8(b)(B).
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(a) Neurite Density Index (NDI)

(b) Orientation Dispersion Index (ODI)

Figure 6.8: a) (A) A representative axial view of microstructural maps of NDI and
(B) difference maps (with respect to NODDIPall) estimated with proposed DLpN
and NODDI for different protocols on a human connectome project (HCP) subject.
b) A representative axial view of microstructural maps of ODI and (B) difference
maps (with respect to NODDIPall) estimated with proposed DLpN and NODDI for
different protocols. Intensity scales are shown. Note, NODDIPall is considered as
pseudo-ground-truth for comparison.
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Figure 6.9: A) A representative axial view of the NDI, ODI, and fractional isotropy
( fISO) maps estimated with proposed DLpN and NODDI for different protocols in
CSVD. Note, NODDIPall fISO is considered as pseudo-ground-truth fISO and used
as training data for DictNet; B) Corresponding difference maps for DLpN-derived
maps with respect to NODDIPall for defined protocols P1 and P2. Intensity scales are
shown.
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Figure 6.10: Log histograms for the objective values of DLpN P1, P2, P3 and
NODDIPall with (A) HCP and (B) CSVD test subjects. Positive direction along
the x-axis corresponds to higher objective values. The goal for both NODDI and
DLpN is to maximize the objective function. Region A is defined as the set of bins
where the NODDI probability density function has lower objective values than DLpN

6.4.2.2 Objective Function Histogram Comparison

NODDI uses a Rician log-likelihood framework (Equation-5.1) to optimize the param-

eters. On the contrary, DLpN reconstruction was achieved in two subsequent stages

utilizing mean squared error and Rician Log-likelihood objective function. Thus, it

is relevant to observe the comparison of the Rician Log-Likelihood values in order to

understand which technique and protocol scored the best objectively.

Objective Function Histograms for HCP and CSVD subjects were calculated with

the objective function defined as the natural log distribution of the Rician log likeli-

hood function, i.e.

L̃ = ln |L/N| (6.2)

, where L is the negative Rician log likelihood described in Equation 5.1 and N is the

number of diffusion gradients per protocol for normalizing the objective function for

comparison. The higher objective value (L̃) indicates that the reconstructed micro-
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parameters explain the scanner derived diffusion signal with greater accuracy.

From the definition of the objective function (Equation-6.2), the distribution that

maximizes L̃ can be said to have identified a better optimized set of NDI, ODI,

and fISO. Objective evaluation of Figure-6.10 shows that for both HCP and CSVD

reconstruction, DLpNP1 had the highest distribution with maximum L̃, and then

DLpNP2 and NODDIPall, and the most poorly optimized case was found for DLpNP3,

probably due to lower SNR at higher b-value (Figure-6.1).

6.4.2.3 Signal-to-Noise Ratio (SNR)

SNR comparison demonstrates the visual improvement by utilizing single-shell data.

In diffusion MR, T2-w (S0) image has the highest SNR and the SNR of different

shell (b-value) is significantly different (Figure-6.1). This suggests data with higher

b-value (lower SNR) may have difficulty reconstructing reliable metrics, since a lower

SNR will affect the fitting quality. This is especially true for clinical cases. In clinical

scenario, the HSV colormap of the combined parameters shows that the heavy noise

in multi-shell derived parameters is qualitatively contrasting compared to single-shell.

The improvement in Signal-to-Noise Ratio can also be attributed to the use of a high

SNR T2-weighted prior in conjunction with single-shell estimation.

6.5 Clinical Validation of Single-Shell NODDI

Clinical validation is important in order to understand the accuracy and sensitivity

of the parametric maps. This section aims to provide substantial evidence for clinical

validation with single-shell NDI, ODI and fISO mapping. Initially to understand

accuracy of using single-shell mapping, we demonstrate single-shell derived contrast

in a White Matter Hyperintensity (WMH) case side by side with multi-shell derived
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Figure 6.11: Qualitative SNR comparison between single shell and multishell NODDI
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Figure 6.12: Comparison of DLpN derived NDI and fISO maps with NODDIPall in
CSVD

contrast, where our proposed approach holds the desired contrast compared with

multi-shell NODDI. Then, mean percentage error and Pearson correlation quantifies

the accuracy of the three parameters at Gray Matter and White Matter ROIs. Finally,

we evaluate the sensitivity of our proposed approach by correlating the proposed

single-shell reconstruction with aging and cognitive performance.

6.5.1 Single-Shell Contrast on White Matter Hyperintensity

A HIV-CSVD participant with WMH characterized by a Fazekas score [128] of 3,

and hyper-intensity lesion volume of 1.77cm3 was selected to demonstrate our single-

shelled proposed contrast compared to multi-shell derived parameters. Figure-6.12

presents the NDI and fISO maps computed with DLpNP2 and original NODDIPall, and

corresponding T2 FLAIR images. Lesions in both NDI and fISO maps are clearly

visible. Details are available in the Supplementary Materials (Figure S10-12) from

[12].
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6.5.2 Error (%) & Pearson Correlation of GM &WM ROIs

The performances of the single shell fISO with DictNet, and NDI and ODI with DLPN,

have been assessed for both WM and GM by means of the percentage error (mean and

standard deviation), as presented in Figure-6.13. The percentage errors are shown for

all the parameters and protocols with respect to the pseudo-ground-truth NODDIall

parameters and reported as the mean of the ROIs. Single shell protocols (P1 and P2)

had a roughly 5% error with a small variance in estimating NDI and ODI (Figure-

6.13B and 6.13C). Comparisons of ROI mean values for six test subjects with DLPN

and NODDI are reported in supporting figures S5, S6, and S7 (for fISO, NDI, and

ODI, respectively) in the research study [12].

Pearson correlation analysis for JHU-ICBM WM and HO GM ROIs of the same

test subjects showed strong correlations between NODDIall and DLPN (Support-

ing Figure-S8 in [12]). Correlation coefficients for NDI with single-shell DLPN and

NODDIall are highlighted as follows: DLPNP1, r2 = 0.875; DLPNP2, r2 = 0.927;

DLPNP3, r2 = 0.944. DLPN-based ODI maps also retained strong correlations with

NODDIall (r2 > 0.930) and were found to be similar to those reported previously [8],

for both single- and multi-shell cases. Scatter plots showing significant linear cor-

relations between DLPN derived NDI, ODI, and DictNet derived fISO at different

protocols (P1, P2, P3, P12, P13, P23 and Pall) with the ground-truth NODDI fitted

with Pall protocol (NODDIall). Asteric symbols indicate the mean of all the ROIs

using John Hopkins University White Matter (WM) and Harvard Oxford cortical and

sub-cortical gray matter (GM) atlases. Gray color indicates GM and blue indicates

WM ROIs. Our proposed method showed very strong concordance with the pseudo

ground-truth NODDIall in single-shell and multi-shell protocols.
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Figure 6.13: The estimation errors (%) from in vivo data in isotropic volume frac-
tion fISO (A, B), neurite density index NDI (C, D) and orientation dispersion index
ODI (E, F) for white matter (WM) and gray matter (GM) using DLpN single-shell
protocols P1, P2, P3, and multi-shell protocols P12, P12, P23 and Pall. Errors were
calculated with respect to the pseudo-ground-truth (NODDIPall) for six HCP test
subjects.
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6.5.3 Aging Vs Single/Multi-shell derived NDI, ODI & fISO

This section explores key insights from the comparison of aging with Single-shell

and Multi-shell derived Neurite Density Index (NDI), Orientation Dispersion Index

(ODI), and Fractional Isotropic volume ( fISO) in gray and white matter tissue. Each

plot in Figure-6.15, 6.16 & 6.17 shows a trend line for GM and WM with shaded areas

representing the confidence intervals around these lines. The p-value and correlation

coefficient (r) are provided for GM and WM in each plot. A p-value less than 0.05 and

a higher absolute value of r indicates a stronger statistical relationship, highlighted

in red box. The subject demographics details can be located in 6.2.2 (where P1 refers

to b = 1000s/mm2 and P2 refers to b = 2000s/mm2).

6.5.3.1 Comparison of Single- and Multi-shell Derived fISO in Aging

Figure-6.15 presents the comparison between aging and fISO.

1. Single-shell Derived fISO Shows Significant Correlation with Aging for

both WM and GM A statistically significant correlation is found between

age and Single-shell derived fISO measures. Whereas the statistical sensitivity

is diminished for multi-shell derived fISO.

2. Fractional Isotropy( fISO) Increase with Aging: A trend of statistically

significant increase of fISO, a marker of neuroinflammation, with aging is ob-

served in both GM and WM. The slope of free water increase in GM is higher

than WM, congruent with histology.
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Figure 6.15: Correlation of mean fISO with aging from the combined JHU White
Matter ROIs (squares) and combined Harvard-Oxford Cortical and Subcortical GM
ROIs (circles)
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6.5.3.2 Comparison of Single- and Multi-shell Derived NDI in Aging

Figure 6.16 presents the comparison between aging and NDI in both gray and white

matter tissue in the brain.

• Gray Matter NDI is Sensitive to Aging in Single-shell (P1) A sig-

nificant drop in GM NDI with aging is observed, particularly in low b-value

NDI measurements, which supports the histological evidence in aging []. Multi-

Shell(P12) NDI or High b-value (P2) Single-Shell NDI doesn’t hold this sensi-

tivity.

6.5.3.3 Comparison of Single- and Multi-shell Derived ODI in Aging

Figure 6.17 presents the comparison between aging and ODI in gray and white matter

tissue in the brain.

1. Trends of Single- and Multi-Shell ODIs are Closely Identical ODI

trends remain consistent across both single- and multi-shell which supports the

ODI reconstruction observed in simulation in different protocols(Figure-5.7).

2. Statistical Significance: A statistically significant relationship between ODI

and aging is observed in the WM tissue in both single and multi-shell recon-

structions indicating WM is becoming more dispersed possibly due to the loss

of fiber integrity, which is a common phenomenon in aging.

Our results provide substantial insights into the aging process at the microstruc-

tural level in the brain. The differential capabilities of Single- and Multi-shell NODDI

in distinguishing between GM and WM properties, and their correlation with age,

offer a nuanced understanding of brain aging. For single shell reconstruction, these
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Figure 6.16: Correlation of mean NDI with Aging from the combined JHU White
Matter ROIs (squares) and combined Harvard-Oxford Cortical and Subcortical GM
ROIs (circles)
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Figure 6.17: Correlation of mean ODI with Aging from the combined JHU White
Matter ROIs (squares) and combined Harvard-Oxford Cortical and Sub-cortical GM
ROIs(circles)



CHAPTER 6. AI IN SINGLE-SHELL NODDI 117

findings hold important implications for neuro-scientific research, potentially aiding

in the early detection and monitoring of neuro-degenerative diseases.

6.5.4 Cognitive Scores of HIV+&Control Subjects Vs Single &Multi-

shell Derived NDI, ODI & fISO

This section explores the relationship between Single- and Multi-shell derived NODDI

parameters and cognitive scores in HIV-positive and control groups, with a focus on

gray and white matter tissue in the brain. Each plot in Figure-6.18, 6.19 & 6.20

shows a trend line for GM and WM with shaded areas representing the confidence

intervals around these lines. The p-value and correlation coefficient (r) are provided

for GM and WM in each plot. A p-value less than 0.05 and a higher absolute value

of r indicates a stronger statistical relationship, highlighted in red box. The subject

demographics details can be located in 6.2.2 (where P1 refers to b = 1000s/mm2 and

P2 refers to b = 2000s/mm2).

6.5.4.1 Comparison of Single- and Multi-shell Derived fISO for Cognitive Scores

Key Observations:

1. In Multishell NODDI, no distinction is observed between GM and WM in fISO,

which represents the histologically free water content. In contrast, Single-shell

NODDI demonstrates sensitivity to this difference, typically showing higher free

water content in GM than in WM.

2. An increase in free water content, indicative of neuroinflammation, has been

observed to correlate with a decline in cognitive performance. This trend is

especially evident in the HIV-positive group, where greater sensitivity to free

water content in relation to cognitive performance (total z-score) is observed.
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Figure 6.18: Correlation of fISO with Cognitive Scores of HIV+ and Control subjects
using the combined JHU White Matter ROIs (squares) as Global WM and combined
Harvard-Oxford Cortical/ Subcortical GM as Global GM ROI (circles)
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6.5.4.2 Comparison of Single- and Multi-shell Derived NDI for Cognitive Scores

Key Observations:

1. NDI effectively differentiates between GM and WM in both single and multi-

shell NODDI, as expected from histological characteristics.

2. In the HIV-positive group, a decrease in NDI correlates with higher cognitive

performance, a relationship not observed in healthy controls. This trend is

particularly prominent when low b-value single-shell derived NDI is considered,

whereas multi-shell NODDI does not exhibit such trends or sensitivity.

3. This relationship is predominantly observed in GM, suggesting that low b-value

single-shell NODDI may be more sensitive to changes in GM, also evident when

analyzing age-related trends.

6.5.4.3 Comparison of Single- and Multi-shell Derived ODI for Cognitive Scores

Key Observations:

1. Both single- and multi-shell derived ODI display similar trends in the HIV

and control groups within the CSVD-MRE cohort, aligning with findings from

simulation studies.

2. For higher cognitive performance, a decrease in ODI for GM and an increase

for WM is noted. Conversely, in HIV-positive subjects with lower cognitive

performance, an increase in ODI for GM and a decrease for WM are observed,

suggesting a lower adaptability scenario in these individuals.

These findings underscore the differential impact of HIV on brain tissue character-

istics and cognitive function, as revealed through NODDI parameters. The distinct
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Figure 6.19: Correlation of NDI with Cognitive Scores of HIV+ and Control subjects
using the combined JHU White Matter ROIs (squares) as Global WM and combined
Harvard-Oxford Cortical/ Subcortical GM as Global GM ROI (circles)
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Figure 6.20: Correlation of ODI with Cognitive Scores of HIV+ and Control subjects
using the combined JHU White Matter ROIs (squares) as Global WM and combined
Harvard-Oxford Cortical/Subcortical GM as Global GM (circles)
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patterns observed in HIV-positive subjects compared to controls highlight the po-

tential of NODDI as a tool for understanding neurological changes associated with

HIV.

In this work, we demonstrate that NODDI parameter maps such as NDI and

ODI can be reconstructed from single-shell dMRI data using a dictionary learner es-

timated fISO as a prior. In order to generate fISO, we devise a network, that takes

advantage of the IHT strategy used in recent studies [87, 122]. We propose a non-

iterative scheme of IHT where a constant stochastic layer determines the learning of

dictionary coefficients by the spatial-angular sparse dMRI data from the simulated

dataset based on the protocol obtained from the in-vivo data. The generated coef-

ficient vector contributes to a fully connected feed-forward network to estimate the

fISO. The network incorporates important determinants of fISO priors [129] i.e. MD

and, T2w signal S0 that facilitates single-shell estimation of fISO with NODDI based

data-driven learning. The overall procedure drastically reduces memory requirements

and training time compared to the deep learning approaches (used to reduce gradient

directions in NODDI) [87, 122], and preserves the estimation accuracy and precision

in estimating fISO compared to the ground-truth data.

Using both simulation and in-vivo data experiments, we evaluated the feasibil-

ity of our proposed DLpN approach for single-shell NODDI parameter mapping and

compared the results with the multi-shell NODDIPall. The results from both experi-

ments indicated that single-shell NDI and ODI reconstructions are possible with good

accuracy in WM and GM ROIs. Our simulation results revealed that DictNet gen-

erated single- and multi-shell fISO values were stable whereas, on the same dataset,

NODDI showed ill-posed behavior in fISO estimation in several cases likely due to

NODDI model constraint. That is, in the NODDI fitting, higher fISO regions have
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shown to be explained with higher ODI values, that influences the fISO contribution

as well as NDI. Calculating the fISO from the dictionary instead of grid search shows

that the log-likelihood objective function can be better optimized, and also allows for

single-shell fitting reliably in the process. DLpN based NDI and ODI reconstructions

for single-shell protocols are very close to the ground-truth values and consistently

outperformed the original NODDI fittings. In addition, comparison of the simula-

tion of DictNet derived fISO with bi-tensor model-based FW (both for single- and

multi-shell), deep learner based PMEDN and NODDI in different protocols show

that DictNet derived fISO estimation is stable with single-shell P1 and P2 protocols,

compared to that of other approaches (Figure 6.4). It is because these approaches do

not incorporate either S0, MD, or dictionary accounted for simulated complex tissue

microstructure.

Using the in-vivo HCP data, we found that DLpN based single-shell NDI values

had around 5% difference compared to the pseudo-ground-truth NODDIPall in WM

and GM for single-shell protocols (i.e., P1, P2 and P3). Interestingly, overall NDI

and ODI results suggest that, P2 had a minimum error for both (∼ 5%), even when

it showed to have a higher difference with our estimated fISO prior (∼ 30%) but

our fISO prior retained strong correlations (r2 > 0.85) with the same pseudo-ground-

truth NODDIPall (Figure 8 and Supplementary Figure S8). This means that DictNetP2

identified a different (mean-shifted) set of fISO based on the built dictionary which

retained the similar solution for NDI and ODI with DLpNP2 similar to NODDIPall.

The comparison of objective function histograms between DLpN and NODDI for

the example test subject highlights this point (Figure 6.10). In addition, we show

that a set of voxels in NODDIPall optimization has lower objective values (region A),

where the goal for all the approach was to maximize this objective function. DLpNP2

derived NDI, ODI and fISO parameters resulted in a very similar objective function
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histogram when compared to NODDIPall, except region A where NODDI performed

poorly. As DLpNP2 shows to reconstruct similar NDI and ODI maps as NODDIPall

(difference ∼5%) and multi-shell fitting noise gets reduced in the process. Therefore,

DLpNP2 is recommended to create single-shell NDI and ODI maps given training

protocol as Pall. Possible reasons for biases in single-shell P1 and P3 include the

following: firstly, DLpN ODIs obtained in P1 and P3 are relatively different from

NODDIPall observed from the simulation (also reported in previous study [8] ) and

resemble P2 or the middle protocol used in the Pall. Secondly, DictNetP3 derived fISO

estimation was not stable in simulation, due to the fact that higher b-value images

have lower SNR. This also explains why the DLpNP3 objective histogram is seen to be

left skewed compared to NODDIPall, suggesting there were a large number of voxels

that were not well optimized in DLpNP3. Based on our simulation results, DictNetP1

and DictNetP2 derived fISO values were shown to be stable in simulation. But for

the in-vivo experiment, P2 performed best in generating parameter maps close to the

pseudo-ground-truth (i.e., NODDIPall derived NDI and ODI maps). In case of P1,

we saw P1 based ODI estimation was strongly correlated but different (mean-shifted)

compared to Pall based ODI. Yet interestingly, P1 based optimization has shown

to yield better objective values than NODDIPall. But if we focus on reconstructing

NODDIPall equivalent NDI and ODI as they are histologically validated [130], P2 based

DLpN is the approach to take with Pall based training data. Nevertheless, the high

correlation of DLpNP1l maps with NODDIPall suggests the possibility of histological

correlation to hold valid for DLpNP1l as well, and a subject for future study.

So, to compare DLpN derived NDI and ODI with any other NODDI based studies,

it is recommended to use the middle protocol, i.e., in our case, P2 when DLpN is

trained with Pall (comprising of P1, P2 and P3). We hypothesize observing from the

training pattern that to enable multi-shell equivalent reconstruction on P1, we will
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need to change the training data protocol. That is, we will need to acquire training

data with a b-value lower than P1 and another shell with b-value higher than P1.

This will be further investigated on relevant datasets and should potentially allow the

clinical cases with P1 to perform NODDI investigation.

As an exploratory analysis, we investigated a clinical cohort with CSVD (a low

SNR dataset). As expected, DLpN derived single-shell maps showed high concordance

with the pseudo-ground-truth NODDIPall especially for P2 protocol. In addition, it is

evident that DLpNP2 is highly conspicuous for the lesions in both NDI and fISO maps

than the original NODDI approach.

Major advantages of the DLpN approach are follows: first, NDI and ODI maps

can be further improved with DLpN if independent fISO can be better estimated by

leveraging phantom based fISO studies in future with single- or multi-shell cases. Sec-

ond, the use of a single-shell protocol would reduce the scan time by more than 50%

compared to the standard NODDI acquisition. Thus, this approach might be useful

to obtain NDI and ODI reconstructions using a clinical scanner and in a clinically

feasible acquisition time for cases such as stroke, pediatric or emergency subjects with

sufficient resolution. Third, the DLpN approach may be applied retrospectively on

the existing data collected with a reasonable number of diffusion directions and ap-

propriate b-value (say b=1000 s/mm2). However, prerequisites for using the existing

dataset are that two additional subject scans are required with the same scan param-

eters with 3-shell protocol to train for fISO with the test case single-shell protocol as

the middle protocol of the multi-shell training set. This study has some limitations.

Firstly, the parallel diffusivity in the NODDI toolbox was not optimized for GM

regions which is recommended in the previous works [131, 132] to obtain better out-

comes for the cortical areas, which can be accommodated in the future experiments.

Secondly, the nature of clinical dataset used was particularly focused on CSVD, fur-
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ther disease cases need to be explored in future for further validation of the approach.

However, as the training is performed voxel-wise, we expect to see similar results on

other disease cases with low resolution clinical dMRI datasets. Thirdly, the DLpN

processing time is currently 10 to 13 hours whereas the original NODDI model re-

quires 20 to 30 hours to process on our multicore setup (Parallel 24 cores). However,

AMICO setup with our single-shell DLpN approach should be able to reduce the

NDI and ODI processing time down to <30 minutes. This work could be further

extended to account for a reduced number of diffusion gradients, and incorporating

quantitative T2 maps with advanced machine learning approaches.

6.6 Conclusions

In this chapter, we have solved the ill-posed single shell NODDI problem utilizing clin-

ically available prior that closely relates to water density in the brain. We proposed to

use a dictionary-based approach incorporating T2-w (S0) and Mean Diffusivity prior

that provides a reliable prior to independently estimate fractional isotropy( fISO) that

enables neurite based quantification. We have demonstrated that single-shell based

neurite density, fractional isotropy and orientation dispersion holds clinical contrast

in low and high b-value settings (shown in a white matter hyperintensity case study).

Initial result has shown positive results in high quality HCP data, and finally, appli-

cation in clinical HIV-CSVD cohort is demonstrated. The sensitivity of the method

was demonstrated on an aging population and cognitive performance of the popula-

tion accompanied by Pearson correlation of white and gray matter ROIs. Current

clinical cohort included 66 subjects, where well distributed age group is required in

future to establish our findings.

Single-shell neurite and fractional isotropy quantification have been deemed as
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a physically ill-posed problem. To our knowledge, our study is the first to take

a systemic approach in solving this problem. We have solved the problem in two

stages; with the utilization of clinically informed prior with AI, our work is the first

to demonstrate sensitivity of single-shell neurite and fractional isotropy in an aging

scenario, and further in cognitive performance decline with HIV neuro-inflammation.
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Chapter 7

Summary of Contributions

& Future Directions

7.1 Summary of Key Results

In this study, we have proposed to use AI with geometrical and multi-modal context in

order to recover lost microstructural details from limited Q-space resolution in single-

shell protocols with DTI and NODDI. Diffusion is a well observed phenomenon in the

brain, and can be measured non-invasively with diffusion sensitive protocols with MRI

but clinical dMRI suffers from lower angular resolution and singular b-value samplings

that limits the retrievable microstructural details. Our preliminary objective was to

recover clinical details from a lower angular resolution diffusion data in DTI. Then

single-shell problem of NODDI was studied in a synthetic data simulation. Retrieving

cues from the simulation, multi-modal priors was used to recover multi-compartments

in NODDI. The investigation resulted in the following findings:

In Q-space up-sampling task,

• The clinical group differences for axial and mean diffusivity could be reliably

retrieved with the proposed approach when utilizing geometrical context of
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Q-space. Comparison with different techniques showed that False Positive out-

comes from the clinical differences increased for the methods that did not di-

rectly utilize geometrical context from the Q-space.

• In Medical Imaging, scarcity of training data limits the data-driven learning in

clinical studies. For dMRI, we observe that leveraging geometrical context of

Q-space helps reduce the burden on the availability of training samples signifi-

cantly.

In Single-Shell NODDI estimation,

• Synthetic data simulation revealed that single-shell NODDI can be conditioned

with free water compartment in order to solve for Neurtie Density Index and

Orientation Dispersion Index parameters.

• Simulation experiment further disclosed that the conditioning parameter fISO

could not be retrieved without the help of multi-modal maps that related with

free water compartment of tissue in single-shell.

• Comparison of theoretical objective function of single and multi-shell recon-

struction of NODDI validated the reliability of estimated reconstruction.

• Single-shell estimated fractional isotropy showed greater sensitivity increasing

with age in the Global White Matter and Gray Matter Regions. Further qual-

itative maps of clinical White Matter Hyperintensity Regions demonstrated

expected contrast for neurite density index and fractional anisotropy.



CHAPTER 7. SUMMARY OF CONTRIBUTIONS & FUTURE DIRECTIONS 131

7.2 Discussion

7.2.1 Retrieving Lost DTI-based Microstructure Differences

DTI (Section-3.2.1) metrics are computed after acquisition of diffusion signals in

different spatial directions. The number of directions used in DTI computation are

vital in capturing microstructure differences in different disease cases. Use of higher

number of directions is often limited in clinical diffusion data acquisition because of

urgency and clinical priorities of other modalities. However, it is evident (Figure-4.1)

that statistically significant differences observed with higher angular resolution is lost

in lower resolution DTI metric. Thus, different AI techniques have come forward to

up-sample the Q-space.

Different AI (ML/DL) approaches have shown to improve visual image quality,

but clinical validation was necessary to consciously make sure we are not making

the reconstructions subject to hallucination. In this study, we have put forward an

approach that uses the angular context of the Q-Space to up-sample Q-spaces of 50

Episodic and 50 Chronic Migraine patients and investigates the differences retained

with the up-sampled reconstruction comparing different AI techniques. Global scoring

metric was designed with true and false positive scores based on ROIs and TBSS WM

fiber skeleton (Family wise corrected p-value reported). False positive scores was used

to penalize the different methods.

The comparison revealed that our approach with Q-space angular context per-

formed the best in resolving the lost clinical differences. The proposed approach also

used the lowest training resources made available in the data-set, Only 5 training and

validation data from healthy controls enabled test results on the chronic and episodic

migraine population.
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7.2.2 Retrieving Neurite & Extracellular Sensitivity with Single-Shell

NODDI

NODDI is a practical biophysical model, built on the assumption that the neu-

rites/dendrites and extracellular free water have constant diffusivity; and its objective

is to quantify fractional compartments that results the final scanner derived diffusion

signal. However, single-shell NODDI doesn’t fit well and described as an ill-posed

problem in the literature. Thus, it was not possible to quantify neurite information

in clinical dMRI.

In this study, we examine the behaviour of NODDI under conditioned assumptions

in simulation using single- and multi-shell data. Our simulation study has shown that

holding extracellular fISO as prior, we are able to distinguish the neurite compartment

volume and neurite dispersion, approximated to the ground truth data. This led to

the necessity of independent approximation of fISO, which failed when using only

single shell data. However, using clinically available multi-modal contrasts ( that

related to tissue water density), we were able to retrieve extracellular free water map

using only single-shell data both in simulation and in-vivo. The mapping was done

using a dictionary based approach motivated from PMEDN.

We studied the aging and cognitive scores relating to single- and multi-shell de-

rived neurite volume, dispersion and extracellular free water metrics from 60 clinical

subjects. We have observed clinically meaningful and sensitive changes in aging gray

and white matter using single shell NODDI (using DLpN), especially with neurite

density and free water. The orientation dispersion results were as similar to multi-

shell. Our approach resulted in higher sensitivity in gray matter to aging with single

shell data. Lower b-value single shell retrieved higher clinical sensitivity for neurite

volume in GM, which supports the result of the objective function histogram com-
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Figure 7.1: Zonal feature (Fu(θ j)) extraction from the Q-space using machine learner
feature proposed by Karimi et al. [82]

parison. Our simulation results also demonstrated better neurite volume results with

b=1000 s2/mm in comparison with higher b-values, suggesting SNR plays a crucial

role in NODDI fitting with rician log-likelihood function.

We observed that diffusion signal data with different b-values have different SNRs,

indicating higher b-values might have reduced fitting quality when using multi-shell

data.

7.3 Future Opportunities

7.3.1 Q-space Up-sampling without Optimized Diffusion Protocol

Our proposed approach in Chapter-4 could only up-sample diffusion signals for proto-

cols with uniformly distributed directions (Optimized with IMOC Algorithm) whereas

in most real clinical scenarios the diffusion directions are often un-optimized.

To resolve the issue, we have extended our work by incorporating zonal Q-space
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Figure 7.2: Zonal feature block with a 3D CNN trained with three phase optimization
to upsample diffusion signal.

Figure 7.3: Loss comparison indicates performance using Q-space zonal feature block
based network is better compared to HemiHex-FCN.

feature block in our learning strategy, implemented as a preliminary method that

accounts for the non-uniform directions by utilizing intelligently catered Q-space fea-

tures from the diffusion signals (Figure-7.1 and 7.2). The results we have obtained

are promising when compared with HemiHex-MLP loss at the end of third phase

optimization (Figure-7.3). Further experimentation is in progress to improve the

up-sampling strategy for non-optimized cases.
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7.3.2 Single-Shell NODDI in Clinical Longitudinal Study

We have successfully conducted an early stage investigation with proposed single-

shell neurite information involving aging and cognitive status of HIV+ and Control

subjects. In near future, we will be looking at 3 different time points that are 18

months apart for each subject, from the same data-set.

Further, microstructural investigation will be conducted on an earlier study, inves-

tigating the neurological implications of combined anti-retro-viral therapy (cART),

that also includes longitudinal time-points. For this data-set, neurite quantification

was not possible due to multi-shell requirement. We have scanned two volunteers

using multi-shell for preliminary training and validation to reconstruct neurite mea-

sures from the available limiting single-shell data for the data-set. We expect to study

progression of HIV pathogenesis in the brain as the virus is known to cross Blood

Brain Barriers at the early stage of infection.

7.3.3 Multi-modal Sensitivity & AI in General MR

Multi-modality in MR comes with different sensitivities. Meaning they probe in-

formation regarding different tissue substrates. For example, myelin sensitivity with

diffusion involves scanning with very low echo time and relatively low repetition time,

which is not common for general diffusion protocols. This kind of physical limitations

are very common in MR where different contrast brings out different tissue sensitivity

or elements (e.g. Iron) residing in the tissue.

These contrasts can complement each other and depict further information on

brain histology, ultimately influencing how to look at neural pathogenesis. AI is an

indispensable tool in studying the relationship of these complementary sensitivities.

In situations where physics is limited, data science can play a major role in advancing
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Figure 7.4: Example of multimodal MRI shows functional connectivity analysis of
Visuo-Spatial Network using Diffusion and MR Elastography, where connectivity
maps are generated from diffusion tractography. 34 control and 30 HIV subjects are
used in the analysis.
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such scenarios.

For example, we have previously reported that MR based stiffness can directly

infer physical changes of brain tissue, and the free water content has shown to follow an

inverse trend compared to stiffness in the HIV group [133]. Our recent analysis further

explored HIV in Magnetic Resonance Elastography (MRE) functionally defined areas

of the HIV brain by using diffusion based connectivity analysis. It is apparent that

the change in neurite density and extracellular water affects the tissue stiffness in

a functional brain network(Figure-7.4). Since MR Elastography requires a scanning

setup not commonly available in clinical MRIs for the brain, diffusion derived metrics

like NDI and fISO could potentially act as a surrogate if they can be mapped with

viscosity and elastic modulus using AI models by using functionally defined regions

and their connectivity. An elastography surrogate could be an important tool for

brain tissue investigations.

7.3.4 Tackling Data Scarcity in Clinical dMRI

While accomplishing the two major objectives of Section-1.3.2, we have demonstrated

that by leveraging sparse diffusion signal with their relative angular context, we can

reduce the training sample burden significantly for clinical dMRI.

This finding is a pointer for future studies involving AI and dMRI. We expect

that this will help in tackling future data scarcity problems in clinical dMRI.
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